Abstract

The paper presents a simplified nonlinear model for an open cathode proton exchange membrane fuel cell (PEMFC) and its control using three different control strategies. The model presented uses four state variables. The mass flow of oxygen, hydrogen flow, water flow, and temperature were taken to be the critical dynamics in the system. The unknown parameters were estimated using the experimental data of a 1.2 kW PEMFC. The simplified model showed good agreement with experimental results. Control schemes were implemented to control the stack temperature and the oxygen excess ratio of the PEMFC. The proportional (P) and proportional–integral (PI) control performed well but had a poorer response compared to the sliding mode control (SMC) scheme. The study of the different control schemes reveals the dangers of solely controlling either the oxygen excess ratio or the temperature. Results show that the best control is achieved when the excess ratio is controlled together with the reference temperature. The study also compares the parasitic losses from the fans caused by the different controllers. Overall, the results provide a good insight into designing a robust control system for an open cathode PEMFC for faster response and greater durability of the PEMFC.

References

1.
Carrette
,
L.
,
Friedrich
,
K. A.
, and
Stimming
,
U.
,
2000
, “
Fuel Cells: Principles, Types, Fuels, and Applications
,”
ChemPhysChem
, 1(4), pp.
162
193
.
2.
Laghrouche
,
S.
,
Matraji
,
I.
,
Ahmed
,
F. S.
,
Jemei
,
S.
, and
Wack
,
M.
,
2013
, “
Load Governor Based on Constrained Extremum Seeking for PEM Fuel Cell Oxygen Starvation and Compressor Surge Protection
,”
Int. J. Hydrogen Energy
,
38
(
33
), pp.
14314
14322
.
3.
Mohammadi
,
A.
,
Djerdir
,
A.
,
Yousfi Steiner
,
N.
, and
Khaburi
,
D.
,
2015
, “
Advanced Diagnosis Based on Temperature and Current Density Distributions in a Single PEMFC
,”
Int. J. Hydrogen Energy
,
40
(
45
), pp.
15845
15855
.
4.
Mohammadi
,
A.
,
Chabane
,
D.
,
Cirrincione
,
G.
,
Cirrincione
,
M.
, and
Djerdir
,
A.
,
2018
, “
Effect of the Temperature Distribution on the Performance of PEMFC Stacks for Fault Diagnosis
,”
2018 21st International Conference on Electrical Machines and Systems (ICEMS)
,
Jeju, South Korea
,
Oct. 7–10
, pp.
1019
1023
.
5.
Ijaodola
,
O. S.
,
El- Hassan
,
Z.
,
Ogungbemi
,
E.
,
Khatib
,
F. N.
,
Wilberforce
,
T.
,
Thompson
,
J.
, and
Olabi
,
A. G.
,
2019
, “
Energy Efficiency Improvements by Investigating the Water Flooding Management on Proton Exchange Membrane Fuel Cell (PEMFC)
,”
Energy
,
179
(
Special Issue
), pp.
246
267
.
6.
Yuan
,
W.-W.
,
Ou
,
K.
, and
Kim
,
Y.-B.
,
2020
, “
Thermal Management for an Air Coolant System of a Proton Exchange Membrane Fuel Cell Using Heat Distribution Optimization
,”
Appl. Therm. Eng.
,
167
(
Special Issue
), p.
114715
.
7.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
,
2002
, “
Modeling and Control for PEM Fuel Cell Stack System
,”
Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301)
,
Anchorage, AK
,
May 8–10
, Vol. 4, pp.
3117
3122
.
8.
Chiu
,
L.-Y.
, and
Diong
,
B. M.
,
2003
, “
An Improved Small-Signal Model of the Dynamic Behavior of PEM Fuel Cells
,”
38th IAS Annual Meeting on Conference Record of the Industry Applications Conference
,
Salt Lake City, UT
,
Oct. 12-16
.
9.
Marsala
,
G.
,
Pucci
,
M.
,
Vitale
,
G.
,
Cirrincione
,
M.
, and
Miraoui
,
A.
,
2009
, “
A Prototype of a Fuel Cell PEM Emulator Based on a Buck Converter
,”
Appl. Energy
,
86
(
10
), pp.
2192
2203
.
10.
Chen
,
J.
,
Liu
,
Z.
,
Wang
,
F.
,
Ouyang
,
Q.
, and
Su
,
H.
,
2018
, “
Optimal Oxygen Excess Ratio Control for PEM Fuel Cells
,”
IEEE Trans. Control Syst. Technol.
,
26
(
5
), pp.
1711
1721
.
11.
Danzer
,
M. A.
,
Wilhelm
,
J.
,
Aschemann
,
H.
, and
Hofer
,
E. P.
,
2008
, “
Model-Based Control of Cathode Pressure and Oxygen Excess Ratio of a PEM Fuel Cell System
,”
J. Power Sources
,
176
(
2
), pp.
515
522
.
12.
Daud
,
W. R. W.
,
Rosli
,
R. E.
,
Majlan
,
E. H.
,
Hamid
,
S. A. A.
,
Mohamed
,
R.
, and
Husaini
,
T.
,
2017
, “
PEM Fuel Cell System Control: A Review
,”
Renew. Energy
,
113
(
Special Issue
), pp.
620
638
.
13.
Zhang
,
J.
,
Wang
,
Y.-X.
,
He
,
H.
, and
Wang
,
Y.
,
2020
, “
Active Thermal Management for an Automotive Water-Cooled Proton Exchange Membrane Fuel Cell by Using Feedback Control
,”
2020 IEEE Vehicle Power and Propulsion Conference (VPPC)
,
Gijon, Spain
,
Nov. 18–Dec. 16
, pp.
1
5
.
14.
Woo
,
C. H.
, and
Benziger
,
J. B.
,
2007
, “
PEM Fuel Cell Current Regulation by Fuel Feed Control
,”
Chem. Eng. Sci.
,
62
(
4
), pp.
957
968
.
15.
Serra
,
M.
,
Aguado
,
J.
,
Ansede
,
X.
, and
Riera
,
J.
,
2005
, “
Controllability Analysis of Decentralised Linear Controllers for Polymeric Fuel Cells
,”
J. Power Sources
,
151
(
Special Issue
), pp.
93
102
.
16.
Giménez
,
S. N.
,
Durá
,
J. M. H.
,
Ferragud
,
F. X. B.
, and
Fernández
,
R. S.
,
2020
, “
Design and Experimental Validation of the Temperature Control of a PEMFC Stack by Applying Multiobjective Optimization
,”
IEEE Access
,
8
, pp.
183324
183343
.
17.
Zou
,
W.-J.
, and
Kim
,
Y.-B.
,
2019
, “
Temperature Control for a 5 kW Water-Cooled PEM Fuel Cell System for a Household Application
,”
IEEE Access
,
7
, pp.
144826
144835
.
18.
Zhao
,
D.
,
Li
,
F.
,
Ma
,
R.
,
Zhao
,
G.
, and
Huangfu
,
Y.
,
2020
, “
An Unknown Input Nonlinear Observer Based Fractional Order PID Control of Fuel Cell Air Supply System
,”
IEEE Trans. Ind. Appl.
,
56
(
5
), pp.
5523
5532
.
19.
Chen
,
Q.
,
Chen
,
J.
, and
Wang
,
Y.-X.
,
2020
, “
Open Cathode Type of Fuel Cell Stack Temperature Regulation by Active Disturbance Rejection Control
,”
2020 Chinese Automation Congress (CAC)
,
Shanghai, China
,
Nov. 6–8
, pp.
3435
3440
.
20.
Gheisarnejad
,
M.
,
Boudjadar
,
J.
, and
Khooban
,
M.-H.
,
2019
, “
A New Adaptive Type-II Fuzzy-Based Deep Reinforcement Learning Control: Fuel Cell Air-Feed Sensors Control
,”
IEEE Sens. J.
,
19
(
20
), pp.
9081
9089
.
21.
Shtessel
,
Y.
,
Edwards
,
C.
,
Fridman
,
L.
, and
Levant
,
A.
,
2014
,
Sliding Mode Control and Observation
, Vol. 10,
Springer
,
New York
.
22.
Utkin
,
V.
,
1977
, “
Variable Structure Systems With Sliding Modes
,”
IEEE Trans. Autom. Contr.
,
22
(
2
), pp.
212
222
.
23.
Wu
,
L.
,
Liu
,
J.
,
Vazquez
,
S.
, and
Mazumder
,
S. K.
,
2022
, “
Sliding Mode Control in Power Converters and Drives: A Review
,”
IEEE/CAA J. Autom. Sin.
,
9
(
3
), pp.
392
406
.
24.
Chen
,
C.-T.
, and
Peng
,
S.-T.
,
2006
, “
A Sliding Mode Control Scheme for Non-minimum Phase Non-Linear Uncertain Input-Delay Chemical Processes
,”
J. Process Control
,
16
(
1
), pp.
37
51
.
25.
Liu
,
J.
,
Gao
,
Y.
,
Su
,
X.
,
Wack
,
M.
, and
Wu
,
L.
,
2019
, “
Disturbance-Observer-Based Control for Air Management of PEM Fuel Cell Systems Via Sliding Mode Technique
,”
IEEE Trans. Control Syst. Technol.
,
27
(
3
), pp.
1129
1138
.
26.
Sankar
,
K.
, and
Jana
,
A. K.
,
2018
, “
Nonlinear Multivariable Sliding Mode Control of a Reversible PEM Fuel Cell Integrated System
,”
Energy Convers. Manage.
,
171
, pp.
541
565
.
27.
Kumar
,
S. S.
,
Cirrincione
,
M.
,
Léchappé
,
V.
,
Ram
,
K. R.
, and
Mohammadi
,
A.
,
2021
, “
A Simplified Control Oriented Model of an Open Cathode PEM Fuel Cell
,”
2021 IEEE 12th Energy Conversion Congress Exposition—Asia (ECCE-Asia)
,
Singapore
,
May 24–27
, pp.
2415
2420
.
28.
Spiegel
,
C.
,
2011
,
PEM Fuel Cell Modeling and Simulation Using MATLAB
,
Elsevier
,
New York
.
29.
Khotseng
,
Lindiwe
,
2020
, “Fuel Cell Thermodynamics,”
Thermodynamics and Energy Engineering
,
P.
Vizureanu
, ed.,
IntechOpen
,
London
, p.
10
.
30.
O’Hayre
,
Ryan
,
Cha
,
S.-W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2016
,
Fuel Cell Fundamentals
,
John Wiley & Sons
,
Hoboken, NJ
.
31.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Harris
,
T. J.
,
1995
, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell: I. Mechanistic Model Development
,”
J. Electrochem. Soc.
,
142
(
1
), pp.
1
8
.
32.
Ram
,
K. R.
,
Naidu
,
K.
,
Kumar
,
R.
,
Cirrincione
,
M.
, and
Mohammadi
,
A.
,
2019
, “
Model Comparison and Parameter Estimation of Polymer Exchange Membrane (PEM) Fuel Cell Based on Nonlinear Least Squares Method
,”
2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)
,
Istanbul, Turkey
,
Aug. 27–29
, pp.
500
505
.
33.
Ou
,
K.
,
Yuan
,
W.-W.
,
Choi
,
M.
,
Yang
,
S.
, and
Kim
,
Y.-B.
,
2017
, “
Performance Increase for an Open-Cathode PEM Fuel Cell With Humidity and Temperature Control
,”
Int. J. Hydrogen Energy
,
42
(
50
), pp.
29852
29862
.
34.
Jian
,
Q.
,
Huang
,
B.
,
Luo
,
L.
,
Zhao
,
J.
,
Cao
,
S.
, and
Huang
,
Z.
,
2018
, “
Experimental Investigation of the Thermal Response of Open-Cathode Proton Exchange Membrane Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
43
(
29
), pp.
13489
13500
.
You do not currently have access to this content.