Abstract

This research experimentally examines the thermal behavior of an air-cooled Li-ion battery pack with triangular spoilers. The objective is to enhance temperature uniformity and reduce the maximum temperature of the battery pack by redirecting airflow toward regions of higher temperatures using triangular spoilers. The effects of spoiler angles (α) and spoiler positions (Ds) on the thermal performance of a 24V, 10Ah aligned battery pack are investigated. The parameters used to evaluate the thermal performance are temperature variation along as well as transverse to the airflow direction and temperature variation around the circumference of the cell. The maximum temperature (Tmax), average temperature (Tavg.), maximum temperature difference (ΔTmax), and standard deviation of the temperature (σT) are the other performance parameters that are assessed. It is observed that the temperature of the battery pack decreases along the airflow direction with both the increase in α and Ds. It happens due to the enhancement in the heat transfer rate caused by higher turbulence kinetic energy. The non-uniformity in the cell temperature around the circumference improves by 0.4 K and 1.8 K with the change in α and Ds, respectively. It is found that Tmax and Tavg of the battery pack are reduced by a maximum value of 2.5 K and 1.55 K, respectively, compared to the case when no spoiler is used. The maximum reduction in ΔTmax and σT is found to be 2.4 K and 1.02, respectively.

References

1.
Diouf
,
B.
, and
Christophe
,
A.
,
2019
, “
The Potential of Li-Ion Batteries in ECOWAS Solar Home Systems
,”
J. Energy Storage
,
22
, pp.
295
301
.
2.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
Electrochem. Soc.
,
158
(
2
), pp.
1
25 R1
.
3.
Tete
,
P. R.
,
Gupta
,
M. M.
, and
Joshi
,
S. S.
,
2021
, “
Developments in Battery Thermal Management Systems for Electric Vehicles: A Technical Review
,”
J. Energy Storage
,
35
, p.
102255
.
4.
Tian
,
L. L.
,
Zhuang
,
Q. C.
,
Li
,
J.
,
Shi
,
Y. L.
,
Chen
,
J. P.
,
Lu
,
F.
, and
Sun
,
S. G.
,
2011
, “
Mechanism of Intercalation and Deintercalation of Lithium Ions in Graphene Nanosheets
,”
Chinese Sci. Bull.
,
56
(
30
), pp.
3204
3212
.
5.
Tahir
,
M. W.
, and
Merte
,
C.
,
2022
, “
Multi-Scale Thermal Modeling, Experimental Validation, and Thermal Characterization of a High-Power Lithium-Ion Cell for Automobile Application
,”
Energy Convers. Manage
,
258
, p.
115490
.
6.
Zhang
,
T.
,
Qiu
,
X.
,
Li
,
M.
,
Yin
,
Y.
,
Jia
,
L.
,
Dai
,
Z.
,
Guo
,
X.
, and
Wei
,
T.
,
2023
, “
Thermal Runaway Propagation Characteristics and Preventing Strategies Under Dynamic Thermal Transfer Conditions for Lithium-Ion Battery Modules
,”
J. Energy Storage
,
58
, p.
106463
.
7.
Wang
,
C.
,
Zhu
,
Y.
,
Gao
,
F.
,
Bu
,
X.
,
Chen
,
H.
,
Quan
,
T.
,
Xu
,
Y.
, and
Jiao
,
Q.
,
2022
, “
Internal Short Circuit and Thermal Runaway Evolution Mechanism of Fresh and Retired Lithium-Ion Batteries With LiFePO4 Cathode During Overcharge
,”
Appl. Energy
,
328
, p.
120224
.
8.
Wang
,
G.
,
Kong
,
D.
,
Ping
,
P.
,
He
,
X.
,
Lv
,
H.
,
Zhao
,
H.
, and
Hong
,
W.
,
2023
, “
Modeling Venting Behavior of Lithium-Ion Batteries During Thermal Runaway Propagation by Coupling CFD and Thermal Resistance Network
,”
Appl. Energy
,
334
, p.
120660
.
9.
Yu
,
Q.
,
Abidi
,
A.
,
Mahmoud
,
M. Z.
,
Hasani
,
M. E.
, and
Aybar
,
,
2022
, “
Numerical Evaluation of the Effect of Air Inlet and Outlet Cross-Sections of a Lithium-Ion Battery Pack in an Air-Cooled Thermal Management System
,”
J. Power Sources
,
549
, p.
232067
.
10.
Zhang
,
J.
,
Wu
,
X.
,
Chen
,
K.
,
Zhou
,
D.
, and
Song
,
M.
,
2021
, “
Experimental and Numerical Studies on an Efficient Transient Heat Transfer Model for Air-Cooled Battery Thermal Management Systems
,”
J. Power Sources
,
490
, p.
229539
.
11.
Zhang
,
F.
,
Yi
,
M.
,
Wang
,
P.
, and
Liu
,
C.
,
2021
, “
Optimization Design for Improving Thermal Performance of T-Type Air-Cooled Lithium-Ion Battery Pack
,”
J. Energy Storage
,
44
, p.
103464
.
12.
Chen
,
K.
,
Wu
,
W.
,
Yuan
,
F.
,
Chen
,
L.
, and
Wang
,
S.
,
2019
, “
Cooling Efficiency Improvement of Air-Cooled Battery Thermal Management System Through Designing the Flow Pattern
,”
Energy
,
167
, pp.
781
790
.
13.
Jilte
,
R. D.
,
Kumar
,
R.
, and
Ma
,
L.
,
2019
, “
Thermal Performance of a Novel Confined Flow Li-Ion Battery Module
,”
App. Therm. Eng.
,
146
, pp.
1
11
.
14.
Chen
,
K.
,
Chen
,
Y.
,
Li
,
Z.
,
Yuan
,
F.
, and
Wang
,
S.
,
2018
, “
Design of the Cell Spacings of Battery Pack in Parallel Air-Cooled Battery Thermal Management System
,”
Int. J. Heat Mass Transf.
,
127
, pp.
393
401
.
15.
Yuksel
,
T.
, and
Michalek
,
J.
,
2012
, “Development of a Simulation Model to Analyze the Effect of Thermal Management on Battery Life,” SAE Technical Paper, 2012-01-0671.
16.
Patil
,
S. M.
,
Seo
,
J.
, and
Lee
,
M.
,
2021
, “
A Novel Dielectric Fluid Immersion Cooling Technology for Li-Ion Battery Thermal Management
,”
Energy Convers. Manage
,
229
, p.
113715
.
17.
Akbarzadeh
,
M.
,
Jaguemont
,
J.
,
Kalogiannis
,
T.
,
Karimi
,
D.
,
He
,
J.
,
Jin
,
L.
,
Xie
,
P.
,
Van Mierlo
,
J.
, and
Berecibar
,
M.
,
2021
, “
A Novel Liquid Cooling Plate Concept for Thermal Management of Lithium-Ion Batteries in Electric Vehicles
,”
Energy Convers. Manage
,
231
, p.
113862
.
18.
Khan
,
S. A.
,
Eze
,
C.
,
Dong
,
K.
,
Shahid
,
A. R.
,
Patil
,
M. S.
,
Ahmad
,
S.
,
Hussain
,
I.
, and
Zhao
,
J.
,
2022
, “
Design of a New Optimized U-Shaped Lightweight Liquid-Cooled Battery Thermal Management System for Electric Vehicles: A Machine Learning Approach
,”
Int. Commun. Heat Mass Transf.
,
136
, p.
106209
.
19.
Yin
,
B.
,
Zuo
,
S.
,
Xu
,
Y.
, and
Chen
,
S.
,
2022
, “
Performance of Liquid Cooling Battery Thermal Management System in Vibration Environment
,”
J. Energy Storage
,
53
, p.
105232
.
20.
Jindal
,
P.
,
Sharma
,
P.
,
Kundu
,
M.
,
Singh
,
S.
,
Shukla
,
D. K.
,
Pawar
,
V. J.
,
Wei
,
Y.
, and
Breedon
,
P.
,
2022
, “
Computational Fluid Dynamics (CFD) Analysis of Graphene Nanoplatelets for the Cooling of a Multiple Tier Li-Ion Battery Pack
,”
Therm. Sci. Eng. Prog.
,
31
, p.
101282
.
21.
Liu
,
T.
,
Liu
,
Y.
,
Wang
,
X.
,
Kong
,
X.
, and
Li
,
G.
,
2019
, “
Cooling Control of Thermally-Induced Thermal Runaway in 18,650 Lithium-Ion Battery With Water Mist
,”
Energy Convers. Manage
,
199
, p.
111969
.
22.
Jiang
,
Z.
, and
Qu
,
Z.
,
2019
, “
Lithium–Ion Battery Thermal Management Using Heat Pipe and Phase Change Material During Discharge–Charge Cycle: A Comprehensive Numerical Study
,”
Appl. Energy
,
242
, pp.
378
392
.
23.
Ren
,
R.
,
Zhao
,
Y.
,
Diao
,
Y.
, and
Liang
,
L.
,
2022
, “
Experimental Study on Preheating Thermal Management System for Lithium-Ion Battery Based on U-Shaped Micro Heat Pipe Array
,”
Energy
,
253
, p.
124178
.
24.
Behi
,
H.
,
Behi
,
M.
,
Karimi
,
D.
,
Jaguemont
,
J.
,
Ghanbarpour
,
M.
,
Behnia
,
M.
,
Berecibar
,
M.
, and
Van Mierlo
,
J.
,
2021
, “
Heat Pipe Air-Cooled Thermal Management System for Lithium-Ion Batteries: High Power Applications
,”
Appl. Therm. Eng.
,
183
, p.
116240
.
25.
Tran
,
T.
,
Harmand
,
S.
, and
Sahut
,
B.
,
2014
, “
Experimental Investigation on Heat Pipe Cooling for Hybrid Electric Vehicle and Electric Vehicle Lithium-Ion Battery
,”
J. Power Sources
,
265
, pp.
262
272
.
26.
Xie
,
Y.
,
Tang
,
J.
,
Shi
,
S.
,
Xing
,
Y.
,
Wu
,
H.
,
Hu
,
Z.
, and
Wen
,
D.
,
2017
, “
Experimental and Numerical Investigation on Integrated Thermal Management for Lithium-Ion Battery Pack With Composite Phase Change Materials
,”
Energy Convers. Manage
,
154
, pp.
562
575
.
27.
Zhou
,
Z.
,
Wang
,
D.
,
Peng
,
Y.
,
Li
,
M.
,
Wang
,
B.
,
Cao
,
B.
, and
Yang
,
L.
,
2022
, “
Experimental Study on the Thermal Management Performance of Phase Change Material Module for the Large Format Prismatic Lithium-Ion Battery
,”
Energy
,
238
, p.
122081
.
28.
Chen
,
H.
,
Zhan
,
T.
,
Gao
,
Q.
,
Han
,
Z.
,
Xu
,
Y.
,
Yang
,
K.
,
Xu
,
X.
, and
Liu
,
X.
,
2022
, “
Advance and Prospect of Power Battery Thermal Management Based on Phase Change and Boiling Heat Transfer
,”
J. Energy Storage
,
53
, p.
105254
.
29.
Qi
,
X.
,
Sajadi
,
S. M.
,
Mahmoud
,
M. Z.
,
Li
,
Z.
,
Shamseldin
,
M. A.
, and
Aybar
,
,
2022
, “
Study of Circular, Horizontal and Vertical Elliptical Enclosures Filled With Phase Change Material in Thermal Management of Lithium-Ion Batteries in an Air-Cooled System
,”
J. Energy Storage
,
53
, p.
105041
.
30.
Hu
,
S.
,
Wang
,
S.
,
Ma
,
C.
,
Li
,
S.
,
Liu
,
X.
, and
Zhang
,
Y.
,
2022
, “
A Hybrid Cooling Method With Low Energy Consumption for Lithium-Ion Battery Under Extreme Conditions
,”
Energy Convers. Manage
,
266
, p.
115831
.
31.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium-Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
.
32.
Lee
,
S.
,
Han
,
U.
, and
Lee
,
H.
,
2022
, “
Development of a Hybrid Battery Thermal Management System Coupled With Phase Change Material Under Fast Charging Conditions
,”
Energy Convers. Manage
,
268
, p.
116015
.
33.
Jang
,
D. S.
,
Yun
,
S.
,
Hong
,
S. H.
,
Cho
,
W.
, and
Kim
,
Y.
,
2022
, “
Performance Characteristics of a Novel Heat Pipe-Assisted Liquid Cooling System for the Thermal Management of Lithium-Ion Batteries
,”
Energy Convers. Manage
,
251
, p.
115001
.
34.
Deng
,
Y.
,
Feng
,
C.
,
Jiaqiang
,
E.
,
Zhu
,
H.
,
Chen
,
J.
,
Wen
,
M.
, and
Yin
,
H.
,
2018
, “
Effects of Different Coolants and Cooling Strategies on the Cooling Performance of the Power Lithium-Ion Battery System: A Review
,”
Appl. Therm. Eng.
,
142
, pp.
10
29
.
35.
Zhao
,
R.
,
Zhang
,
S.
,
Liu
,
J.
, and
Gu
,
J.
,
2015
, “
A Review of Thermal Performance Improving Methods of Lithium-Ion Battery: Electrode Modification and Thermal Management System
,”
J. Power Sources
,
299
, pp.
557
577
.
36.
Zhang
,
F.
,
Liu
,
P.
,
He
,
Y.
, and
Li
,
S.
,
2022
, “
Cooling Performance Optimization of Air-Cooling Lithium-Ion Battery Thermal Management System Based on Multiple Secondary Outlets and Baffle
,”
J. Energy Storage
,
52
, p.
104678
.
37.
Wang
,
M.
,
Teng
,
S.
,
Xi
,
H.
, and
Li
,
Y.
,
2021
, “
Cooling Performance Optimization of Air-Cooled Battery Thermal Management System
,”
Appl. Therm. Eng.
,
195
, pp.
117242
.
38.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2018
, “
Development and Analysis of a Technique to Improve Air-Cooling and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Therm. Science Eng. Prog.
,
5
, pp.
351
363
.
39.
Zhang
,
S.
,
He
,
X.
,
Long
,
N.
,
Shen
,
Y.
, and
Gao
,
Q.
,
2023
, “
Improving the Air-Cooling Performance for Lithium-Ion Battery Packs by Changing the Air Flow Pattern
,”
Appl. Therm. Eng.
,
221
, pp.
119825
.
40.
Chen
,
K.
,
Wang
,
S.
,
Song
,
M.
, and
Chen
,
L.
,
2017
, “
Structure Optimization of Parallel Air-Cooled Battery Thermal Management System
,”
Int. J. Heat Mass Transf.
,
111
, pp.
943
952
.
41.
Yang
,
R.
,
Wang
,
M.
, and
Xi
,
H.
,
2023
, “
Thermal Investigation and Forced Air-Cooling Strategy of Battery Thermal Management System Considering Temperature Non-Uniformity of Battery Pack
,”
Appl. Therm. Eng.
,
219
, pp.
119566
.
42.
Lu
,
Z.
,
Yu
,
X.
,
Wei
,
L.
,
Qiu
,
Y.
,
Zhang
,
L.
,
Meng
,
X.
, and
Jin
,
L.
,
2018
, “
Parametric Study of Forced Air-Cooling Strategy for Lithium-Ion Battery Pack With Staggered Arrangement
,”
Appl. Therm. Eng.
,
136
, pp.
28
40
.
43.
Yang
,
N.
,
Zhang
,
X.
,
Li
,
G.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
.
44.
Fan
,
Y.
,
Bao
,
Y.
,
Ling
,
C.
,
Chu
,
Y.
,
Tan
,
X.
, and
Yang
,
S.
,
2019
, “
Experimental Study on the Thermal Management Performance of Air Cooling for High Energy Density Cylindrical Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
155
, pp.
96
109
.
45.
Yang
,
W.
,
Wang
,
Y.
,
Guo
,
F.
,
Bai
,
Y.
, and
Liu
,
X.
,
2022
, “
Optimization Study of Air-Cooled Stagger-Arranged Battery Pack With Reverse-Layered Airflow
,”
J. Energy Storage
,
55
, pp.
105524
.
46.
Kim
,
C.
,
Han
,
J.
, and
Hong
,
S.
,
2022
, “
Evaluation of Spoiler Model Based on Air Cooling on Lithium-Ion Battery Pack Temperature Uniformity
,”
Processes
,
10
, pp.
505
.
47.
Zhang
,
F.
,
Lin
,
A.
,
Wang
,
P.
, and
Li
,
P.
,
2021
, “
Optimization Design of a Parallel Air-Cooled Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
182
, pp.
116062
.
48.
Zhuang
,
W.
,
Liu
,
Z.
,
Su
,
H.
, and
Chen
,
G.
,
2021
, “
An Intelligent Thermal Management System for Optimized Lithium-Ion Battery Pack
,”
Appl. Therm. Eng.
,
189
, pp.
116767
.
49.
Wang
,
N.
,
Li
,
C.
,
Li
,
W.
,
Huang
,
M.
, and
Qi
,
D.
,
2021
, “
Effect Analysis on Performance Enhancement of a Novel Air-Cooling Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
192
, pp.
116932
.
50.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2018
,
Fluid Mechanics: Fundamentals and Applications
, 4th ed.,
McGraw-Hill Higher Education
,
New York
.
51.
Plett
,
G. L.
,
2015
,
Battery Management Systems Volume I Battery Modeling
,
Artech House
,
Norwood, MA
.
52.
Li
,
X.
,
He
,
F.
, and
Ma
,
L.
,
2013
, “
Thermal Management of Cylindrical Batteries Investigated Using Wind Tunnel Testing and Computational Fluid Dynamics Simulation
,”
J. Power Sources
,
238
, pp.
395
402
.
53.
Holman
,
J. P.
,
2007
,
Experimental Methods for Engineers
, 7th ed.,
Mc Graw Hill
,
New Delhi, India
, pp.
51
62
.
54.
Verma
,
S. P.
, and
Das
,
D.
,
2018
, “
Analysis of Natural Convection Heat Transfer Through Staggered Pin Finned Horizontal Base Plate Within a Rectangular Enclosure
,”
Heat Mass Transf.
,
54
(
9
), pp.
2635
2644
.
55.
Verma
,
S. P.
, and
Saraswati
,
S.
,
2023
, “
Numerical and Experimental Analysis of Air-Cooled Lithium-Ion Battery Pack for the Evaluation of the Thermal Performance Enhancement
,”
J. Energy Storage
,
73
, pp.
108983
.
You do not currently have access to this content.