Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Enhancing the safety performance of high-energy-density lithium-ion batteries is crucial for their widespread adoption. Herein, a cost-effective and highly efficient electrolyte additive, triphenyl phosphate (TPP), demonstrates flame-retardant properties by scavenging hydrogen radicals in the flame, thereby inhibiting chain reactions and flame propagation to enhance the safety performance of graphite/LiNi0.8Co0.1Mn0.1O2 (Gr/NCM811) pouch cells. The results reveal that the capacity retention of cells without flame retardants, and those with the addition of 1 wt%, 3 wt%, 5 wt%, and 10 wt% TPP is 96.4%, 92.1%, 84.15%, 40.8%, and 12.4% (at 1/2C 300 cycles), respectively. Furthermore, compared to cells without flame retardants, the highest temperature during thermal runaway (TR) decreases by 8.3%, 26.9%, 35.1%, and 38.8% with the addition of 1 wt%, 3 wt%, 5 wt%, and 10 wt% TPP, respectively. Through comprehensive analysis of the impact of flame-retardant additives on battery electrochemical performance and safety, it is determined that the optimal addition amount is 3 wt%. At this level, there are no significant flames during battery abuse, the triggering temperature for TR increases by 26.6 ℃, and the maximum temperature decreases by 157 ℃. Moreover, even after 300 cycles at 1/2C, a capacity of 814.5 mAh is retained, with a capacity retention rate of 84.1%. This study provides valuable insights into mitigating TR in high-energy-density power batteries.

References

1.
Chen
,
M.
,
Zhu
,
M.
,
Zhang
,
S.
,
Ouyang
,
D.
,
Weng
,
J.
,
Wei
,
R.
,
Chen
,
Y.
,
Zhao
,
L.
, and
Wang
,
J.
,
2023
, “
Experimental Investigation on Mitigation of Thermal Runaway Propagation of Lithium-Ion Battery Module With Flame Retardant Phase Change Materials
,”
Appl. Therm. Eng.
,
235
, p.
121401
.
2.
Wu
,
Y.
,
Feng
,
X.
,
Yang
,
M.
,
Zhao
,
C. Z.
,
Liu
,
X.
,
Ren
,
D.
,
Ma
,
Z.
, et al
,
2022
, “
Thermal Runaway of Nonflammable Localized High-Concentration Electrolytes for Practical LiNi0.8 Mn0.1 Co0.1 O2 |Graphite-SiO Pouch Cells
,”
Adv. Sci. (Weinh)
,
9
(
32
), p.
e2204059
.
3.
Wu
,
Y.
,
Feng
,
X.
,
Ma
,
Z.
,
Gao
,
L.
,
Wang
,
Y.
,
Zhao
,
C.-Z.
,
Ren
,
D.
, et al
,
2023
, “
Electrolyte Design for Stable Electrode-Electrolyte Interphase to Enable High-Safety and High-Voltage Batteries
,”
eTransportation
,
15
(
180
), p.
100216
.
4.
Wu
,
C.
,
Wu
,
Y.
,
Yang
,
X.
,
Xin
,
T.
,
Chen
,
S.
,
Yang
,
M.
,
Peng
,
Y.
, et al
,
2021
, “
Thermal Runaway Suppression of High-Energy Lithium-Ion Batteries by Designing the Stable Interphase
,”
J. Electrochem. Soc.
,
168
(
9
), p.
090563
.
5.
Wu
,
C.
,
Wu
,
Y.
,
Xu
,
X.
,
Ren
,
D.
,
Li
,
Y.
,
Chang
,
R.
,
Deng
,
T.
,
Feng
,
X.
, and
Ouyang
,
M.
,
2022
, “
Synergistic Dual-Salt Electrolyte for Safe and High-Voltage LiNi0.8Co0.1Mn0.1O2//Graphite Pouch Cells
,”
ACS Appl. Mater. Interfaces
,
14
(
8
), pp.
10467
10477
.
6.
Wu
,
M.
,
Han
,
S.
,
Liu
,
S.
,
Zhao
,
J.
, and
Xie
,
W.
,
2024
, “
Fire-Safe Polymer Electrolyte Strategies for Lithium Batteries
,”
Energy Storage Mater.
,
66
, p.
103174
.
7.
Shi
,
Y.
,
Noelle
,
D. J.
,
Wang
,
M.
,
Le
,
A. V.
,
Yoon
,
H.
,
Zhang
,
M.
,
Meng
,
Y. S.
,
Fan
,
J.
,
Wu
,
D.
, and
Qiao
,
Y.
,
2017
, “
Mitigating Thermal Runaway of Lithium-Ion Battery Through Electrolyte Displacement
,”
Appl. Phys. Lett.
,
110
(
6
), p.
063902
.
8.
Hong
,
M.
,
Chen
,
D.
,
Zhu
,
W.
,
Li
,
G.
,
Zhou
,
X.
,
Li
,
W.
, and
Liao
,
Y.
,
2023
, “
Synergistic Effect of Inorganic Mg(OH)2 and Organic Triphenyl Phosphate Based Coating Layers on Flame-Retardant Separator for High-Voltage Li||LiNi0.8Co0.1Mn0.1O2 Cell
,”
Solid State Ionics
,
393
, p.
116184
.
9.
Gao
,
Z.
,
Rao
,
S.
,
Zhang
,
T.
,
Li
,
W.
,
Yang
,
X.
,
Chen
,
Y.
,
Zheng
,
Y.
,
Ding
,
Y.
,
Dong
,
T.
, and
Li
,
S.
,
2022
, “
Design Strategies of Flame-Retardant Additives for Lithium Ion Electrolyte
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
3
), p.
030910
.
10.
Ding
,
Y.
,
Zheng
,
Y.
,
Li
,
S.
,
Dong
,
T.
,
Gao
,
Z.
,
Zhang
,
T.
,
Li
,
W.
, et al
,
2023
, “
A Review of Battery Thermal Management Methods for Electric Vehicles
,”
ASME J. Electrochem. Energy Convers. Storage
,
20
(
2
), p.
021002
.
11.
Huang
,
P.-H.
,
Chang
,
S.-J.
,
Li
,
C.-C.
, and
Chen
,
C.-A.
,
2017
, “
Boehmite-Based Microcapsules as Flame-Retardants for Lithium-Ion Batteries
,”
Electrochim. Acta
,
228
(
676
), pp.
597
603
.
12.
Huang
,
P.-H.
,
Chang
,
S.-J.
, and
Li
,
C.-C.
,
2017
, “
Encapsulation of Flame Retardants for Application in Lithium-Ion Batteries
,”
J. Power Sources
,
338
(
163
), pp.
82
90
.
13.
Gao
,
Z.
,
Rao
,
S.
,
Zhang
,
T.
,
Gao
,
F.
,
Xiao
,
Y.
,
Shali
,
L.
,
Wang
,
X.
, et al
,
2022
, “
Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries
,”
Adv. Sci. (Weinh)
,
9
(
5
), p.
e2103796
.
14.
Hou
,
J.
,
Lu
,
L.
,
Wang
,
L.
,
Ohma
,
A.
,
Ren
,
D.
,
Feng
,
X.
,
Li
,
Y.
, et al
,
2020
, “
Thermal Runaway of Lithium-Ion Batteries Employing LiN(SO2F)2-Based Concentrated Electrolytes
,”
Nat. Commun.
,
11
(
1
), p.
5100
.
15.
Du
,
Y.
,
Liu
,
X.
,
Chen
,
L.
,
Yin
,
S.
,
Xie
,
Y.
,
Li
,
A.
,
Liang
,
X.
, et al
,
2023
, “
3D Hierarchical Fireproof Gel Polymer Electrolyte Towards High-Performance and Comprehensive Safety Lithium-Ion Batteries
,”
Chem. Eng. J.
,
476
, p.
146605
.
16.
Han
,
C.
,
Cao
,
Y.
,
Zhang
,
S.
,
Bai
,
L.
,
Yang
,
M.
,
Fang
,
S.
,
Gong
,
H.
, et al
,
2023
, “
Separator With Nitrogen-Phosphorus Flame-Retardant for LiNi(x) Co(y) Mn(1-) (x) (-) (y) O(2) Cathode-Based Lithium-Ion Batteries
,”
Small
,
19
(
26
), p.
e2207453
.
17.
Lan
,
G.
,
Xing
,
L.
,
Bedrov
,
D.
,
Chen
,
J.
,
Guo
,
R.
,
Che
,
Y.
,
Li
,
Z.
,
Zhou
,
H.
, and
Li
,
W.
,
2020
, “
Enhanced Cyclic Stability of Ni-Rich Lithium Ion Battery With Electrolyte Film-Forming Additive
,”
J. Alloys Compd.
,
821
(
19
), p.
153236
.
18.
Kim
,
T.
,
2024
, “
An Artificial Cathode-Electrolyte Interphase With Flame Retardant Capability Enabled by an Organophosphorus Compound for Lithium Metal Batteries
,”
J. Mater. Chem. A
,
12
(
5
), pp.
2902
2915
.
19.
Yim
,
T.
,
Park
,
M. S.
,
Woo
,
S. G.
,
Kwon
,
H. K.
,
Yoo
,
J. K.
,
Jung
,
Y. S.
,
Kim
,
K. J.
,
Yu
,
J. S.
, and
Kim
,
Y. J.
,
2015
, “
Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules With Temperature-Responsiveness
,”
Nano Lett.
,
15
(
8
), pp.
5059
5067
.
20.
Baginska
,
M.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2018
, “
Core-Shell Microcapsules Containing Flame Retardant Tris(2-Chloroethyl Phosphate) for Lithium-Ion Battery Applications
,”
ACS Omega
,
3
(
2
), pp.
1609
1613
.
21.
Ciosek Högström
,
K.
,
Lundgren
,
H.
,
Wilken
,
S.
,
Zavalis
,
T. G.
,
Behm
,
M.
,
Edström
,
K.
,
Jacobsson
,
P.
,
Johansson
,
P.
, and
Lindbergh
,
G.
,
2014
, “
Impact of the Flame Retardant Additive Triphenyl Phosphate (TPP) on the Performance of Graphite/LiFePO4 Cells in High Power Applications
,”
J. Power Sources
,
256
(
15
), pp.
430
439
.
22.
Kai Liu
,
W. L.
,
Qiu
,
Y.
,
Kong
,
B.
,
Sun
,
Y.
,
Chen
,
Z.
,
Zhuo
,
D.
,
Lin
,
D.
, and
Cui
,
Y.
,
2017
, “
Electrospun Core-Shell Microfiber Separator With Thermal-Triggered Flame-Retardant Properties for Lithium-Ion Batteries
,”
Sci. Adv.
,
3
(
1
), p.
e1601978
.
23.
Ye
,
Y.
,
Chou
,
L.-Y.
,
Liu
,
Y.
,
Wang
,
H.
,
Lee
,
H. K.
,
Huang
,
W.
,
Wan
,
J.
, et al
,
2020
, “
Ultralight and Fire-Extinguishing Current Collectors for High-Energy and High-Safety Lithium-Ion Batteries
,”
Nat. Energy
,
5
(
10
), pp.
786
793
.
24.
Xia
,
X.
,
Ping
,
P.
, and
Dahn
,
J. R.
,
2012
, “
The Reactivity of Charged Electrode Materials With Electrolytes Containing the Flame Retardant, Triphenyl Phosphate
,”
J. Electrochem. Soc.
,
159
(
11
), pp.
A1834
A1837
.
25.
Dunn
,
R. P.
,
Kafle
,
J.
,
Krause
,
F. C.
,
Hwang
,
C.
,
Ratnakumar
,
B. V.
,
Smart
,
M. C.
, and
Lucht
,
B. L.
,
2012
, “
Electrochemical Analysis of Li-Ion Cells Containing Triphenyl Phosphate
,”
J. Electrochem. Soc.
,
159
(
12
), pp.
A2100
A2108
.
26.
Nam
,
T. H.
,
Shim
,
E. G.
,
Kim
,
J. G.
,
Kim
,
H. S.
, and
Moonb
,
S. I.
,
2007
, “
Electrochemical Performance of Li-Ion Batteries Containing Biphenyl, Vinyl Ethylene Carbonate in Liquid Electrolyte
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A957
A963
.
27.
Jin
,
T.
,
Wang
,
Y.
,
Hui
,
Z.
,
Qie
,
B.
,
Li
,
A.
,
Paley
,
D.
,
Xu
,
B.
, et al
,
2019
, “
Nonflammable, Low-Cost, and Fluorine-Free Solvent for Liquid Electrolyte of Rechargeable Lithium Metal Batteries
,”
ACS Appl. Mater. Interfaces
,
11
(
19
), pp.
17333
17340
.
28.
Chen
,
X.
,
Li
,
Z.
,
Zhao
,
H.
,
Li
,
J.
,
Li
,
W.
,
Han
,
C.
,
Zhang
,
Y.
,
Lu
,
L.
,
Li
,
J.
, and
Qiu
,
X.
,
2024
, “
Dominant Solvent-Separated Ion Pairs in Electrolytes Enable Superhigh Conductivity for Fast-Charging and Low-Temperature Lithium Ion Batteries
,”
ACS Nano
,
18
(
11
), pp.
8350
8359
.
29.
Xu
,
F.
,
Liu
,
C.
,
Feng
,
W.
,
Nie
,
J.
,
Li
,
H.
,
Huang
,
X.
, and
Zhou
,
Z.
,
2014
, “
Molten Salt of Lithium bis(Fluorosulfonyl)Imide (LiFSI)-Potassium bis(Fluorosulfonyl)Imide (KFSI) as Electrolyte for the Natural Graphite/LiFePO4 Lithium-Ion Cell
,”
Electrochim. Acta
,
135
(
640
), pp.
217
223
.
30.
Hennequin
,
T.
,
Manghi
,
M.
,
Noury
,
A.
,
Henn
,
F.
,
Jourdain
,
V.
, and
Palmeri
,
J.
,
2024
, “
Influence of the Quantum Capacitance on Electrolyte Conductivity Through Carbon Nanotubes
,”
J. Phys. Chem. Lett.
,
15
(
8
), pp.
2177
2183
.
31.
Ma
,
T.-K.
,
Yang
,
Y.-M.
,
Jiang
,
J.-J.
,
Yang
,
M.
, and
Jiang
,
J.-C.
,
2021
, “
Synergistic Flame Retardancy of Microcapsules Based on Ammonium Polyphosphate and Aluminum Hydroxide for Lithium-Ion Batteries
,”
ACS Omega
,
6
(
33
), pp.
21227
21234
.
32.
Tebbe
,
J. L.
,
Fuerst
,
T. F.
, and
Musgrave
,
C. B.
,
2015
, “
Mechanism of Hydrofluoric Acid Formation in Ethylene Carbonate Electrolytes With Fluorine Salt Additives
,”
J. Power Sources
,
297
(
556
), pp.
427
435
.
33.
Wang
,
R.
,
Wang
,
Z.
,
Li
,
X.
, and
Zhang
,
H.
,
2017
, “
Electrochemical Analysis the Influence of Propargyl Methanesulfonate as Electrolyte Additive for Spinel LTO Interface Layer
,”
Electrochim. Acta
,
241
(
560
), pp.
208
219
.
34.
Zhao
,
L.
,
Zhou
,
M.
,
Doi
,
T.
,
Okada
,
S.
, and
Yamaki
,
J.-I.
,
2009
, “
Thermal Characteristics of Nongraphitizable Carbon Negative Electrodes With Electrolyte in Li-Ion Batteries
,”
Electrochim. Acta
,
55
(
1
), pp.
125
130
.
35.
Huang
,
H.
,
Liu
,
C.
, and
Sun
,
Z.
,
2022
, “
Transformation and Migration Mechanism of Fluorine-Containing Pollutants in the Pyrolysis Process of Spent Lithium-Ion Battery
,”
J. Hazard. Mater.
,
435
(
128974
), p.
128974
.
36.
Su
,
X.
,
Tan
,
W.
,
Liu
,
X.
,
Ren
,
Y.
, and
Sun
,
Y.
,
2023
, “
Fabricating of Flame Retardant and Antibacterial Lyocell Fabric Based on Thiamine Pyrophosphate Modification
,”
Cellulose
,
30
(
7
), pp.
4437
4454
.
37.
Zhang
,
N.
,
Yildirim
,
E.
,
Zane
,
C. P.
,
Shen
,
J.
,
Vinueza
,
N.
,
Hinks
,
D.
,
Tonelli
,
A. E.
, and
Pasquinelli
,
M. A.
,
2019
, “
Improved Eco-Friendliness of a Common Flame Retardant Through Inclusion Complexation With Cyclodextrins
,”
ACS Appl. Polym. Mater.
,
1
(
10
), pp.
2768
2777
.
38.
Hou
,
B.
,
Song
,
X.
,
Song
,
K.
,
Geng
,
Z.
,
Pan
,
Y.-T.
,
Song
,
P.
, and
Yang
,
R.
,
2024
, “
Synchronous Preparation and Modification of LDH Hollow Polyhedra by Polydopamine: Synthesis and Application
,”
J. Colloid Interface Sci.
,
654
(
818
), pp.
235
245
.
39.
Deng
,
K.
,
Zeng
,
Q.
,
Wang
,
D.
,
Liu
,
Z.
,
Wang
,
G.
,
Qiu
,
Z.
,
Zhang
,
Y.
,
Xiao
,
M.
, and
Meng
,
Y.
,
2020
, “
Nonflammable Organic Electrolytes for High-Safety Lithium-Ion Batteries
,”
Energy Storage Mater.
,
32
(
526
), pp.
425
447
.
40.
Wu
,
Y.
,
Feng
,
X.
,
Liu
,
X.
,
Wang
,
X.
,
Ren
,
D.
,
Wang
,
L.
,
Yang
,
M.
, et al
,
2021
, “
In-Built Ultraconformal Interphases Enable High-Safety Practical Lithium Batteries
,”
Energy Storage Mater.
,
43
(
596
), pp.
248
257
.
41.
Kato
,
H.
,
Kobayashi
,
Y.
, and
Miyashiro
,
H.
,
2018
, “
Differential Voltage Curve Analysis of a Lithium-Ion Battery During Discharge
,”
J. Power Sources
,
398
, pp.
49
54
.
You do not currently have access to this content.