Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The regular graphite can only provide the negligible capacity for Na-ion intercalation, due to the narrow layer spacing and unstable thermodynamic factor. In this study, an energy storage device is created using the prelithiated graphite and Na3V2(PO4)3&NaClO4-based electrolyte, achieving an initial energy density of 317 W h kg−1 and a long lifespan of 1000 cycles with a 71.3% energy retention under the current rate of 1 C. Additionally, the prelithiated graphite anode could be recognized as an artificial Li metal with a strong skeleton, which reduces the volume changes and provides the growth substrate for Na-ion storage by the plating/stripping behavior. When the Li is depleted by participating in the reconstruction of SEI and the occurrence of complex side reactions, the battery system would die as a result. Therefore, the amounts of excess Li have a significant impact on the electrochemical performance of this device. That is to say that regulating the area density of anode enables a long-life Na3V2(PO4)3||graphite energy storage device.

References

1.
Han
,
X.
,
Gong
,
Y.
,
Fu
,
K.
,
He
,
X.
,
Hitz
,
G. T.
,
Dai
,
J.
,
Pearse
,
A.
, et al
,
2017
, “
Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries
,”
Nat. Mater.
,
16
(
5
), pp.
572
579
.
2.
Ma
,
L. B.
,
Cui
,
J.
,
Yao
,
S. S.
,
Liu
,
X. M.
,
Luo
,
Y. S.
,
Shen
,
X. P.
, and
Kim
,
J. K.
,
2020
, “
Dendrite-Free Lithium Metal and Sodium Metal Batteries
,”
Energy Storage Mater.
,
27
, pp.
522
554
.
3.
Chen
,
C.
,
Zhang
,
Y.
,
Li
,
Y.
,
Kuang
,
Y.
,
Song
,
J.
,
Luo
,
W.
,
Wang
,
Y.
, et al
,
2017
, “
Highly Conductive, Lightweight, Low-Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors
,”
Adv. Energy Mater.
,
7
(
17
), p.
1700595
.
4.
Wang
,
L.
,
Shang
,
J.
,
Huang
,
Q. Y.
,
Hu
,
H.
,
Zhang
,
Y. Q.
,
Xie
,
C.
,
Luo
,
Y. F.
,
Gao
,
Y.
,
Wang
,
H. X.
, and
Zheng
,
Z. J.
,
2021
, “
Smoothing the Sodium-Metal Anode With a Self-Regulating Alloy Interface for High-Energy and Sustainable Sodium-Metal Batteries
,”
Adv. Mater.
,
33
(
41
), p.
2102802
.
5.
Lee
,
B.
,
Paek
,
E.
,
Mitlin
,
D.
, and
Lee
,
S. W.
,
2019
, “
Sodium Metal Anodes: Emerging Solutions to Dendrite Growth
,”
Chem. Rev.
,
119
(
8
), pp.
5416
5460
.
6.
Ye
,
L.
,
Liao
,
M.
,
Zhao
,
T. C.
,
Sun
,
H.
,
Zhao
,
Y.
,
Sun
,
X. M.
,
Wang
,
B. J.
, and
Peng
,
H. S.
,
2019
, “
A Sodiophilic Interphase-Mediated, Dendrite-Free Anode With Ultrahigh Specific Capacity for Sodium-Metal Batteries
,”
Angew. Chem. Int. Ed.
,
58
(
47
), pp.
17054
17060
.
7.
Zhang
,
Y.
,
Zuo
,
T. T.
,
Popovic
,
J.
,
Lim
,
K.
,
Yin
,
Y. X.
,
Maier
,
J.
, and
Guo
,
Y. G.
,
2020
, “
Towards Better Li Metal Anodes: Challenges and Strategies
,”
Mater. Today
,
33
, pp.
56
74
.
8.
Jiao
,
S. H.
,
Zheng
,
J. M.
,
Li
,
Q. Y.
,
Li
,
X.
,
Engelhard
,
M. H.
,
Cao
,
R. G.
,
Zhang
,
J. G.
, and
Xu
,
W.
,
2018
, “
Behavior of Lithium Metal Anodes Under Various Capacity Utilization and High Current Density in Lithium Metal Batteries
,”
Joule
,
2
(
1
), pp.
110
124
.
9.
Xu
,
W.
,
Wang
,
J.
,
Ding
,
F.
,
Chen
,
X.
,
Nasybutin
,
E.
,
Zhang
,
Y.
, and
Zhang
,
J.-G.
,
2014
, “
Lithium Metal Anodes for Rechargeable Batteries
,”
Energy Environ. Sci.
,
7
(
2
), pp.
513
537
.
10.
Bieker
,
G.
,
Winter
,
M.
, and
Bieker
,
P.
,
2015
, “
Electrochemical In Situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode
,”
Phys. Chem. Chem. Phys.
,
17
(
14
), pp.
8670
8679
.
11.
Lin
,
D. C.
,
Liu
,
Y. Y.
, and
Cui
,
Y.
,
2017
, “
Reviving the Lithium Metal Anode for High-Energy Batteries
,”
Nat. Nanotechnol.
,
12
(
3
), pp.
194
206
.
12.
Niu
,
C.
,
Liu
,
D.
,
Lochala
,
J. A.
,
Anderson
,
C. S.
,
Cao
,
X.
,
Gross
,
M. E.
,
Xu
,
W.
, et al
,
2021
, “
Balancing Interfacial Reactions to Achieve Long Cycle Life in High-Energy Lithium Metal Batteries
,”
Nat. Energy
,
6
(
7
), pp.
723
732
.
13.
Wu
,
B. B.
,
Lochala
,
J.
,
Taverne
,
T.
, and
Xiao
,
J.
,
2017
, “
The Interplay Between Solid Electrolyte Interface (SEI) and Dendritic Lithium Growth
,”
Nano Energy
,
40
, pp.
34
41
.
14.
Zhang
,
H.
,
Eshetu
,
G. G.
,
Judez
,
X.
,
Li
,
C.
,
Rodriguez-Martinez
,
L. M.
, and
Armand
,
M.
,
2018
, “
Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives
,”
Angew. Chem. Int. Ed.
,
57
(
46
), pp.
15002
15027
.
15.
Zhang
,
K.
,
Lee
,
G. H.
,
Park
,
M.
,
Li
,
W. J.
, and
Kang
,
Y. M.
,
2016
, “
Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries
,”
Adv. Energy Mater.
,
6
(
20
), p.
1600811
.
16.
Ri
,
G. C.
,
Yu
,
C. J.
,
Kim
,
J. S.
,
Hong
,
S. N.
,
Jong
,
U. G.
, and
Ri
,
M. H.
,
2016
, “
First-Principles Study of Ternary Graphite Compounds Cointercalated With Alkali Atoms (Li, Na, and K) and Alkylamines Towards Alkali Ion Battery Applications
,”
J. Power Sources
,
324
, pp.
758
765
.
17.
Yacoby
,
A.
,
2011
, “
Graphene: Tri and Tri Again
,”
Nat. Phys.
,
7
(
12
), pp.
925
926
.
18.
Li
,
Y.
,
Lu
,
Y. X.
,
Adelhelm
,
P.
,
Titirici
,
M. M.
, and
Hu
,
Y. S.
,
2019
, “
Intercalation Chemistry of Graphite: Alkali Metal Ions and Beyond
,”
Chem. Soc. Rev.
,
48
(
17
), pp.
4655
4687
.
19.
Moriwake
,
H.
,
Kuwabara
,
A.
,
Fisher
,
C. A. J.
, and
Ikuhara
,
Y.
,
2017
, “
Why Is Sodium-Intercalated Graphite Unstable?
,”
RSC Adv.
,
7
(
58
), pp.
36550
36554
.
20.
Xu
,
Z.-L.
,
Yoon
,
G.
,
Park
,
K.-Y.
,
Park
,
H.
,
Tamwattana
,
O.
,
Kim
,
S. J.
,
Seong
,
W. M.
, and
Kang
,
K.
,
2019
, “
Tailoring Sodium Intercalation in Graphite for High Energy and Power Sodium Ion Batteries
,”
Nat. Commun.
,
10
(
1
), pp.
2598
2598
.
21.
Wen
,
Y.
,
He
,
K.
,
Zhu
,
Y. J.
,
Han
,
F. D.
,
Xu
,
Y. H.
,
Matsuda
,
I.
,
Ishii
,
Y.
,
Cumings
,
J.
, and
Wang
,
C. S.
,
2014
, “
Expanded Graphite as Superior Anode for Sodium-Ion Batteries
,”
Nat. Commun.
,
5
(
1
), p.
4033
.
22.
Kim
,
S.
,
Kim
,
Y. J.
, and
Ryu
,
W. H.
,
2021
, “
Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries
,”
ACS Appl. Mater. Inter.
,
13
(
20
), pp.
24070
24080
.
23.
Zhang
,
X. X.
,
Qu
,
H. N.
,
Ji
,
W. X.
,
Zheng
,
D.
,
Ding
,
T. Y.
,
Abegglen
,
C. L.
,
Qiu
,
D. T.
, and
Qu
,
D. Y.
,
2020
, “
Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries
,”
ACS Appl. Mater. Inter.
,
12
(
10
), pp.
11589
11599
. 10.1149/MA2020-024712mtgabs.
24.
Pi
,
Y.
,
Gan
,
Z.
,
Yan
,
M.
,
Pei
,
C.
,
Yu
,
H.
,
Ge
,
Y.
,
An
,
Q.
, and
Mai
,
L.
,
2021
, “
Insight Into Pre-Sodiation in Na3V2(PO4)2F3/C@ Hard Carbon Full Cells for Promoting the Development of Sodium-Ion Battery
,”
Chem. Eng. J.
,
413
, p.
127565
.
25.
Conder
,
J.
, and
Villevieille
,
C.
,
2019
, “
How Reliable Is the Na Metal as a Counter Electrode in Na-Ion Half Cells?
,”
Chem. Commun.
,
55
(
9
), pp.
1275
1278
.
26.
Iermakova
,
D. I.
,
Dugas
,
R.
,
Palacin
,
M. R.
, and
Ponrouch
,
A.
,
2015
, “
On the Comparative Stability of Li and Na Metal Anode Interfaces in Conventional Alkyl Carbonate Electrolytes
,”
J. Electrochem. Soc.
,
162
(
13
), pp.
A7060
A7066
.
27.
Pi
,
Y. Q.
,
Gan
,
Z. W.
,
Li
,
Z.
,
Ruan
,
Y. S.
,
Pei
,
C. Y.
,
Yu
,
H.
,
Han
,
K.
,
Ge
,
Y. W.
,
An
,
Q. Y.
, and
Mai
,
L. Q.
,
2020
, “
Methanol-Derived High-Performance Na3V2(PO4)3/C: From Kilogram-Scale Synthesis to Pouch Cell Safety Detection
,”
Nanoscale
,
12
(
41
), pp.
21165
21171
.
28.
An
,
Q. Y.
,
Xiong
,
F. Y.
,
Wei
,
Q. L.
,
Sheng
,
J. Z.
,
He
,
L.
,
Ma
,
D. L.
,
Yao
,
Y.
, and
Mai
,
L. Q.
,
2015
, “
Nanoflake-Assembled Hierarchical Na3V2(PO4)3/C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism
,”
Adv. Energy Mater.
,
5
(
10
), p.
1401963
.
29.
Liang
,
L. W.
,
Li
,
X. Y.
,
Zhao
,
F.
,
Zhang
,
J. Y.
,
Liu
,
Y.
,
Hou
,
L. R.
, and
Yuan
,
C. Z.
,
2021
, “
Construction and Operating Mechanism of High-Rate Mo-Doped Na3V2(PO4)3@C Nanowires Toward Practicable Wide-Temperature-Tolerance Na-Ion and Hybrid Li/Na-Ion Batteries
,”
Adv. Energy Mater.
,
11
(
21
), p.
2170079
.
30.
Sun
,
B.
,
Li
,
P.
,
Zhang
,
J. Q.
,
Wang
,
D.
,
Munroe
,
P.
,
Wang
,
C. Y.
,
Notten
,
P. H. L.
, and
Wang
,
G. X.
,
2018
, “
Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries
,”
Adv. Mater.
,
30
(
29
), p.
1801334
.
31.
Ye
,
L.
,
Liao
,
M.
,
Sun
,
H.
,
Yang
,
Y.
,
Tang
,
C.
,
Zhao
,
Y.
,
Wang
,
L.
, et al
,
2019
, “
Stabilizing Lithium Into Cross-Stacked Nanotube Sheets With an Ultra-High Specific Capacity for Lithium Oxygen Batteries
,”
Angew. Chem. Int. Ed.
,
58
(
8
), pp.
2437
2442
.
32.
Chi
,
S. S.
,
Qi
,
X. G.
,
Hu
,
Y. S.
, and
Fan
,
L. Z.
,
2018
, “
3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes
,”
Adv. Energy Mater.
,
8
(
15
), p.
1702764
.
33.
Yui
,
Y.
,
Hayashi
,
M.
, and
Nakamura
,
J.
,
2016
, “
In Situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode
,”
Sci. Rep.
,
6
(
1
), p.
22406
.
34.
Xiao
,
J.
,
Li
,
Q.
,
Bi
,
Y.
,
Cai
,
M.
,
Dunn
,
B.
,
Glossmann
,
T.
,
Liu
,
J.
, et al
,
2020
, “
Understanding and Applying Coulombic Efficiency in Lithium Metal Batteries
,”
Nat. Energy
,
5
(
8
), pp.
561
568
.
35.
Adams
,
B. D.
,
Zheng
,
J. M.
,
Ren
,
X. D.
,
Xu
,
W.
, and
Zhang
,
J. G.
,
2018
, “
Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries
,”
Adv. Energy Mater.
,
8
(
7
), p.
1702097
.
You do not currently have access to this content.