Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The negative electrode of sodium ion batteries (SIBs) has always faced severe challenges in the commercialization process. At present, the commercial negative electrode capacity of sodium ion batteries is only 300–350 mA h g−1, with 1000 cycles capacity retention rate of less than 80%, making it difficult to apply to high profit downstream industries such as new energy vehicles and 3C digital that require strict energy density and lifespan. To improve capacity, increase the first Coulomb efficiency, and enhance performance under high current density, we have prepared a nitrogen phosphorus codoped hard carbon material. Phosphorus groups are doped in the material to achieve sodium storage, at the same time, coating phenolic resin for material modification. At the same time, nitrogen and carbon nanotube (CNT) structures are added during the preparation process to make it have good conductivity. CMC binder and ether-based electrolyte are used to solve the problem of low first Coulomb efficiency by reducing excessive reaction between the negative electrode and the electrolyte. In actual testing, this material has a capacity of 365 mA h g−1 and a capacity retention rate of 112% under long cycles.

References

1.
Armand
,
M.
, and
Tarascon
,
J.-M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
2.
Scrosati
,
B.
,
Hassoun
,
J.
, and
Sun
,
Y.-K.
,
2011
, “
Lithium-Ion Batteries. A Look Into the Future
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3287
3295
.
3.
Usiskin
,
R.
,
Lu
,
Y.
,
Popovic
,
J.
,
Law
,
M.
,
Balaya
,
P.
,
Hu
,
Y.-S.
, and
Maier
,
J.
,
2021
, “
Fundamentals, Status and Promise of Sodium-Based Batteries
,”
Nat. Rev. Mater.
,
6
(
11
), pp.
1020
1035
.
4.
Slater
,
M. D.
,
Kim
,
D.
,
Lee
,
E.
, and
Johnson
,
C. S.
,
2013
, “
Sodium-Ion Batteries
,”
Adv. Funct. Mater.
,
23
(
8
), pp.
947
958
.
5.
Yabuuchi
,
N.
,
Kubota
,
K.
,
Dahbi
,
M.
, and
Komaba
,
S.
,
2014
, “
Research Development on Sodium-Ion Batteries
,”
Chem. Rev.
,
114
(
23
), pp.
11636
11682
.
6.
Chayambuka
,
K.
,
Mulder
,
G.
,
Danilov
,
D. L.
, and
Notten
,
P. H. L.
,
2018
, “
Sodium-Ion Battery Materials and Electrochemical Properties Reviewed
,”
Adv. Energy Mater.
,
8
(
16
), p.
1800079
.
7.
Liu
,
Y.
,
Zhang
,
N.
,
Jiao
,
L.
,
Tao
,
Z.
, and
Chen
,
J.
,
2015
, “
Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries
,”
Adv. Funct. Mater.
,
25
(
2
), pp.
214
220
.
8.
Guo
,
S.
,
Yi
,
J.
,
Sun
,
Y.
, and
Zhou
,
H.
,
2016
, “
Recent Advances in Titanium-Based Electrode Materials for Stationary Sodium-Ion Batteries
,”
Energy Environ. Sci.
,
9
(
10
), pp.
2978
3006
.
9.
Palomares
,
V.
,
Serras
,
P.
,
Villaluenga
,
I.
,
Hueso
,
K. B.
,
Carretero-González
,
J.
, and
Rojo
,
T.
,
2012
, “
Na-Ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems
,”
Energy Environ. Sci.
,
5
(
3
), pp.
5884
5901
.
10.
Stevens
,
D. A.
, and
Dahn
,
J. R.
,
2000
, “
High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
,”
J. Electrochem. Soc.
,
147
(
4
), pp.
1271
1273
.
11.
Jia
,
Y.
,
Chen
,
X.
,
Lu
,
H.
,
Zhong
,
F.
,
Feng
,
X.
,
Chen
,
W.
,
Ai
,
X.
,
Yang
,
H.
, and
Cao
,
Y.
,
2020
, “
Hard Carbon Anode Derived From Camellia Seed Shell With Superior Cycling Performance for Sodium-Ion Batteries
,”
J. Phys. D: Appl. Phys.
,
53
(
41
), p.
414002
.
12.
Ghosh
,
S.
,
Santhosh
,
R.
,
Jeniffer
,
S.
,
Raghavan
,
V.
,
Jacob
,
G.
,
Nanaji
,
K.
,
Kollu
,
P.
,
Jeong
,
S. K.
, and
Grace
,
A. N.
,
2019
, “
Natural Biomass Derived Hard Carbon and Activated Carbons as Electrochemical Supercapacitor Electrodes
,”
Sci. Rep.
,
9
(
1
), p.
16315
.
13.
Zhang
,
X.
,
Chen
,
W.
,
Peng
,
J.
,
Guo
,
Y.
,
Cheng
,
L.
,
Chen
,
N.
,
Du
,
R.
,
Huang
,
Y.
,
Xue
,
L.
, and
Zhang
,
W.
,
2022
, “
Pore Structure Modification of Pitch-Derived Hard Carbon for Enhanced Pore Filling Sodium Storage
,”
Energy Technol.
,
10
(
11
), p.
2200612
.
14.
Dou
,
X.
,
Hasa
,
I.
,
Saurel
,
D.
,
Vaalma
,
C.
,
Wu
,
L.
,
Buchholz
,
D.
,
Bresser
,
D.
,
Komaba
,
S.
, and
Passerini
,
S.
,
2019
, “
Hard Carbons for Sodium-Ion Batteries: Structure, Analysis, Sustainability, and Electrochemistry
,”
Mater. Today
,
23
, pp.
87
104
.
15.
Li
,
Y.
,
Yuan
,
Y.
,
Bai
,
Y.
,
Liu
,
Y.
,
Wang
,
Z.
,
Li
,
L.
,
Wu
,
F.
,
Amine
,
K.
,
Wu
,
C.
, and
Lu
,
J.
,
2018
, “
Insights Into the Na+ Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes
,”
Adv. Energy Mater.
,
8
(
18
), p.
18
.
16.
Nita
,
C.
,
Zhang
,
B.
,
Dentzer
,
J.
, and
Matei Ghimbeu
,
C.
,
2021
, “
Hard Carbon Derived From Coconut Shells, Walnut Shells, and Corn Silk Biomass Waste Exhibiting High Capacity for Na-Ion Batteries
,”
J. Energy Chem.
,
58
, pp.
207
218
.
17.
Arena
,
N.
,
Lee
,
J.
, and
Clift
,
R.
,
2016
, “
Life Cycle Assessment of Activated Carbon Production From Coconut Shells
,”
J. Clean. Prod.
,
125
, pp.
68
77
.
18.
Tian
,
W.
,
Wang
,
L.
,
Huo
,
K.
, and
He
,
X.
,
2019
, “
Red Phosphorus Filled Biomass Carbon as High-Capacity and Long-Life Anode for Sodium-Ion Batteries
,”
J. Power Sources
,
430
, pp.
60
66
.
19.
Yin
,
X.
,
Zhao
,
Y.
,
Wang
,
X.
,
Feng
,
X.
,
Lu
,
Z.
,
Li
,
Y.
,
Long
,
H.
,
Wang
,
J.
,
Ning
,
J.
, and
Zhang
,
J.
,
2022
, “
Modulating the Graphitic Domains of Hard Carbons Derived From Mixed Pitch and Resin to Achieve High Rate and Stable Sodium Storage
,”
Small
,
18
(
5
), p.
e2105568
.
20.
Qian
,
J.
,
Wu
,
X.
,
Cao
,
Y.
,
Ai
,
X.
, and
Yang
,
H.
,
2013
, “
High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries
,”
Angew. Chem. Int. Ed.
,
52
(
17
), pp.
4633
4636
.
21.
Yu
,
Z.
,
Song
,
J.
,
Wang
,
D.
, and
Wang
,
D.
,
2017
, “
Advanced Anode for Sodium-Ion Battery With Promising Long Cycling Stability Achieved by Tuning Phosphorus-Carbon Nanostructures
,”
Nano Energy
,
40
, pp.
550
558
.
22.
Zhang
,
C.
,
Wang
,
X.
,
Liang
,
Q.
,
Liu
,
X.
,
Weng
,
Q.
,
Liu
,
J.
,
Yang
,
Y.
, et al
,
2016
, “
Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries
,”
Nano Lett.
,
16
(
3
), pp.
2054
2060
.
23.
Gaddam
,
R. R.
,
Farokh Niaei
,
A. H.
,
Hankel
,
M.
,
Searles
,
D. J.
,
Kumar
,
N. A.
, and
Zhao
,
X. S.
,
2017
, “
Capacitance-Enhanced Sodium-Ion Storage in Nitrogen-Rich Hard Carbon
,”
J. Mater. Chem. A Mater.
,
5
(
42
), pp.
22186
22192
.
24.
Qie
,
L.
,
Chen
,
W. M.
,
Wang
,
Z. H.
,
Shao
,
Q. G.
,
Li
,
X.
,
Yuan
,
L. X.
,
Hu
,
X. L.
,
Zhang
,
W. X.
, and
Huang
,
Y. H.
,
2012
, “
Nitrogen-Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries With a Superhigh Capacity and Rate Capability
,”
Adv. Mater.
,
24
(
15
), pp.
2047
2050
.
25.
You
,
B.
,
Wang
,
L.
,
Yao
,
L.
, and
Yang
,
J.
,
2013
, “
Three Dimensional N-Doped Graphene-CNT Networks for Supercapacitor
,”
Chem. Commun. (Camb.)
,
49
(
44
), pp.
5016
5018
.
26.
Yui
,
Y.
,
Hayashi
,
M.
,
Hayashi
,
K.
, and
Nakamura
,
J.
,
2016
, “
Electrochemical Properties of Sn-Co Electrode With Various Kinds of Binder Materials for Sodium Ion Batteries
,”
Solid State Ionics
,
288
, pp.
219
223
.
27.
Zhang
,
J.
,
Wang
,
D.-W.
,
Lv
,
W.
,
Zhang
,
S.
,
Liang
,
Q.
,
Zheng
,
D.
,
Kang
,
F.
, and
Yang
,
Q.-H.
,
2017
, “
Achieving Superb Sodium Storage Performance on Carbon Anodes Through an Ether-Derived Solid Electrolyte Interphase
,”
Energy Environ. Sci.
,
10
(
1
), pp.
370
376
.
28.
Che
,
H.
,
Chen
,
S.
,
Xie
,
Y.
,
Wang
,
H.
,
Amine
,
K.
,
Liao
,
X.-Z.
, and
Ma
,
Z.-F.
,
2017
, “
Electrolyte Design Strategies and Research Progress for Room-Temperature Sodium-Ion Batteries
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1075
1101
.
29.
Xu
,
J.
,
Dong
,
G.
,
Jin
,
C.
,
Huang
,
M.
, and
Guan
,
L.
,
2013
, “
Sulfur and Nitrogen Co-soped, Few-Layered Graphene Oxide as a Highly Efficient Electrocatalyst for the Oxygen-Reduction Reaction
,”
ChemSusChem
,
6
(
3
), pp.
493
499
.
30.
Cheng
,
H.
,
Tang
,
Z.
,
Luo
,
X.
, and
Zheng
,
Z.
,
2021
, “
Spartina Alterniflora-Derived Porous Carbon Using as Anode Material for Sodium-Ion Battery
,”
Sci. Total Environ.
,
777
, p.
146120
.
31.
Huang
,
H.
,
Xu
,
R.
,
Feng
,
Y.
,
Zeng
,
S.
,
Jiang
,
Y.
,
Wang
,
H.
,
Luo
,
W.
, and
Yu
,
Y.
,
2020
, “
Sodium/Potassium-Ion Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering
,”
Adv. Mater.
,
32
(
8
), p.
e1904320
.
32.
Liu
,
Y.
,
Merinov
,
B. V.
, and
Goddard 3rd
,
W. A.
,
2016
, “
Origin of Low Sodium Capacity in Graphite and Generally Weak Substrate Binding of Na and Mg Among Alkali and Alkaline Earth Metals
,”
Proc. Natl. Acad. Sci. USA.
,
113
(
14
), pp.
3735
3739
.
33.
Jin
,
J.
,
Shi
,
Z.-q.
, and
Wang
,
C.-y.
,
2014
, “
The Structure and Electrochemical Properties of Carbonized Polyacrylonitrile Microspheres
,”
Solid State Ionics
,
261
, pp.
5
10
.
34.
Matei Ghimbeu
,
C.
,
Górka
,
J.
,
Simone
,
V.
,
Simonin
,
L.
,
Martinet
,
S.
, and
Vix-Guterl
,
C.
,
2018
, “
Insights on the Na+ Ion Storage Mechanism in Hard Carbon: Discrimination Between the Porosity, Surface Functional Groups and Defects
,”
Nano Energy
,
44
, pp.
327
335
.
35.
Jiang
,
Q.
,
Zhang
,
Z.
,
Yin
,
S.
,
Guo
,
Z.
,
Wang
,
S.
, and
Feng
,
C.
,
2016
, “
Biomass Carbon Micro/Nano-structures Derived From Ramie Fibers and Corncobs as Anode Materials for Lithium-Ion and Sodium-Ion Batteries
,”
Appl. Surf. Sci.
,
379
, pp.
73
82
.
36.
Wu
,
L.
,
Buchholz
,
D.
,
Vaalma
,
C.
,
Giffin
,
G. A.
, and
Passerini
,
S.
,
2016
, “
Apple-Biowaste-Derived Hard Carbon as a Powerful Anode Material for Na-Ion Batteries
,”
ChemElectroChem
,
3
(
2
), pp.
292
298
.
37.
Pan
,
J.
,
Sun
,
Y. Y.
,
Yan
,
Y.
,
Feng
,
L.
,
Zhang
,
Y.
,
Lin
,
A.
,
Huang
,
F.
, and
Yang
,
J.
,
2021
, “
Revisit Electrolyte Chemistry of Hard Carbon in Ether for Na Storage
,”
JACS Au
,
1
(
8
), pp.
1208
1216
.
38.
Pu
,
X.
,
Zhao
,
D.
,
Fu
,
C.
,
Chen
,
Z.
,
Cao
,
S.
,
Wang
,
C.
, and
Cao
,
Y.
,
2021
, “
Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves
,”
Angew. Chem. Int. Ed. Engl.
,
60
(
39
), pp.
21310
21318
.
39.
Chen
,
C.
,
Wang
,
Z.
,
Zhang
,
B.
,
Miao
,
L.
,
Cai
,
J.
,
Peng
,
L.
,
Huang
,
Y.
, et al
,
2017
, “
Nitrogen-Rich Hard Carbon as a Highly Durable Anode for High-Power Potassium-Ion Batteries
,”
Energy Storage Mater.
,
8
, pp.
161
168
.
40.
Augustyn
,
V.
,
Come
,
J.
,
Lowe
,
M. A.
,
Kim
,
J. W.
,
Taberna
,
P. L.
,
Tolbert
,
S. H.
,
Abruña
,
H. D.
,
Simon
,
P.
, and
Dunn
,
B.
,
2013
, “
High-Rate Electrochemical Energy Storage Through Li+ Intercalation Pseudocapacitance
,”
Nat. Mater.
,
12
(
6
), pp.
518
522
.
41.
Tang
,
P.
,
Tan
,
W.
,
Deng
,
G.
,
Zhang
,
Y.
,
Xu
,
S.
,
Wang
,
Q.
,
Li
,
G.
,
Zhu
,
J.
,
Dou
,
Q.
, and
Yan
,
X.
,
2023
, “
Understanding Pseudocapacitance Mechanisms by Synchrotron X-Ray Analytical Techniques
,”
Energy Environ. Mater.
,
6
(
4
), pp.
312
331
.
42.
Huang
,
M.
,
Mi
,
K.
,
Zhang
,
J.
,
Liu
,
H.
,
Yu
,
T.
,
Yuan
,
A.
,
Kong
,
Q.
, and
Xiong
,
S.
,
2017
, “
MOF-Derived Bi-metal Embedded N-Doped Carbon Polyhedral Nanocages With Enhanced Lithium Storage
,”
J. Mater. Chem. A Mater.
,
5
(
1
), pp.
266
274
.
43.
Xue
,
Y. C.
,
Gao
,
M. Y.
,
Wu
,
M. R.
,
Su
,
D. Q.
,
Guo
,
X. M.
,
Shi
,
J.
,
Duan
,
M. T.
,
Chen
,
J. L.
,
Zhang
,
J. H.
, and
Kong
,
Q. H.
,
2020
, “
A Promising Hard Carbon-Soft Carbon Composite Anode With Boosting Sodium Storage Performance
,”
ChemElectroChem
,
7
(
19
), pp.
4010
4015
.
44.
Wang
,
S.
,
Xia
,
L.
,
Yu
,
L.
,
Zhang
,
L.
,
Wang
,
H.
, and
Lou
,
X. W. D.
,
2016
, “
Free-Standing Nitrogen-Doped Carbon Nanofiber Films: Integrated Electrodes for Sodium-Ion Batteries With Ultralong Cycle Life and Superior Rate Capability
,”
Adv. Energy Mater.
,
6
(
7
), p.
1502217
.
45.
Wan
,
Y.
,
Song
,
K.
,
Chen
,
W.
,
Qin
,
C.
,
Zhang
,
X.
,
Zhang
,
J.
,
Dai
,
H.
, et al
,
2021
, “
Ultra-high Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage
,”
Angew. Chem. Int. Ed. Engl.
,
60
(
20
), pp.
11481
11486
.
46.
Hong
,
Z.
,
Zhen
,
Y.
,
Ruan
,
Y.
,
Kang
,
M.
,
Zhou
,
K.
,
Zhang
,
J. M.
,
Huang
,
Z.
, and
Wei
,
M.
,
2018
, “
Rational Design and General Synthesis of S-Doped Hard Carbon With Tunable Doping Sites Toward Excellent Na-Ion Storage Performance
,”
Adv. Mater.
,
30
(
29
), p.
e1802035
.
You do not currently have access to this content.