Abstract

Heat removal and thermal management are critical for the safe and efficient operation of lithium-ion batteries and packs. Effective removal of dynamically generated heat from cells presents a substantial challenge for thermal management optimization. This study introduces a novel liquid cooling thermal management method aimed at improving temperature uniformity in a battery pack. A complex nonlinear hybrid model is established through traditional full-factor design and back propagation neural network (BPNN) approximation. This model links input parameters such as the number of baffles, baffle angle, and inlet speed to output parameters including maximum temperature, temperature difference, and pressure drop. Global multiobjective optimization is carried out using the Nondominated Sorting Genetic Algorithm II to sidestep locally optimal solutions. Pareto optimal solutions are sorted using multiple criteria decision-making techniques. Through thermal management optimization, the maximum temperature rise of the battery relative to the initial temperature is controlled within 7.68 K, the temperature difference is controlled within 4.22 K (below the commonly required 5 K), and the pressure drop is only 83.92 Pa. Results presented in this work may help enhance the performance and efficiency of battery-based energy conversion and storage. The optimization technique used in this work helps maximize the benefit of an innovative battery thermal management technique.

References

1.
McGovern
,
M. E.
,
Bruder
,
D. D.
,
Huemiller
,
E. D.
,
Rinker
,
T. J.
,
Bracey
,
J. T.
,
Sekol
,
R. C.
, and
Abell
,
J. A.
,
2023
, “
A Review of Research Needs in Nondestructive Evaluation for Quality Verification in Electric Vehicle Lithium-Ion Battery Cell Manufacturing
,”
J. Power Sources
,
561
, p.
232742
.
2.
Park
,
S.J.
,
Song
,
Y.W.
,
Kang
,
B.S.
,
Kim
,
W.J.
,
Choi
,
Y.J.
,
Kim
,
C.
, and
Hong
,
Y.S.
,
2023
, “
Depth of Discharge Characteristics and Control Strategy to Optimize Electric Vehicle Battery Life
,”
J. Energy Storage
,
59
, p.
106477
.
3.
Parlikar
,
A.
,
Schott
,
M.
,
Godse
,
K.
,
Kucevic
,
D.
,
Jossen
,
A.
, and
Hesse
,
H.
,
2023
, “
High-Power Electric Vehicle Charging: Low-Carbon Grid Integration Pathways With Stationary Lithium-Ion Battery Systems and Renewable Generation
,”
Appl. Energy
,
333
, p.
120541
.
4.
Habib
,
A. K. M. A.
, and
Hasan
,
M. K.
,
2023
, “
Lithium-Ion Battery State-of-Charge Balancing Circuit Using Single Resonant Converter for Electric Vehicle Applications
,”
J. Energy Storage
,
61
, p.
106727
.
5.
Zha
,
Y. F.
,
Meng
,
X. F.
,
Qin
,
S. S.
,
Hou
,
N. R.
,
He
,
S. Q.
,
Huang
,
C. Y.
,
Zuo
,
H. Y.
, and
Zhao
,
X. H.
,
2023
, “
Performance Evaluation With Orthogonal Experiment Method of Drop Contact Heat Dissipation Effects on Electric Vehicle Lithium-Ion Battery
,”
Energy
,
271
, p.
127049
.
6.
Shu
,
X.
,
Yang
,
W. X.
,
Wei
,
K. X.
,
Qin
,
B.
,
Du
,
R. H.
,
Yang
,
B. W.
, and
Garg
,
A.
,
2023
, “
Research on Capacity Characteristics and Prediction Method of Electric Vehicle Lithium-Ion Batteries Under Time-Varying Operating Conditions
,”
J. Energy Storage
,
58
, p.
106334
.
7.
He
,
L. G.
,
Jing
,
H. D.
,
Zhang
,
Y.
,
Li
,
P. P.
, and
Gu
,
Z. H.
,
2023
, “
Review of Thermal Management System for Battery Electric Vehicle
,”
J. Energy Storage
,
59
, p.
106443
.
8.
Zhang
,
S. B.
,
He
,
X.
,
Long
,
N. C.
,
Shen
,
Y. J.
, and
Gao
,
Q.
,
2023
, “
Improving the Air-Cooling Performance for Lithium-Ion Battery Packs by Changing the Air Flow Pattern
,”
Appl. Therm. Eng.
,
221
, p.
119825
.
9.
Zhang
,
S. B.
,
Nie
,
F.
,
Cheng
,
J. P.
,
Yang
,
H.
, and
Gao
,
Q.
,
2024
, “
Optimizing the Air Flow Pattern to Improve the Performance of the Air-Cooling Lithium-Ion Battery Pack
,”
Appl. Therm. Eng.
,
236
, p.
121486
.
10.
Yang
,
C. Y.
,
Xi
,
H.
, and
Wang
,
M. W.
,
2023
, “
Structure Optimization of Air Cooling Battery Thermal Management System Based on Lithium-Ion Battery
,”
J. Energy Storage
,
59
, p.
106538
.
11.
Hasan
,
H. A.
,
Togun
,
H.
,
Abed
,
A. M.
,
Biswas
,
N.
, and
Mohammed
,
H. I.
,
2023
, “
Thermal Performance Assessment for an Array of Cylindrical Lithium-Ion Battery Cells Using an Air-Cooling System
,”
Appl. Energy
,
346
, p.
121354
.
12.
Khaboshan
,
H. N.
,
Jaliliantabar
,
F.
,
Abdullah
,
A. A.
, and
Panchal
,
S.
,
2023
, “
Improving the Cooling Performance of Cylindrical Lithium-Ion Battery Using Three Passive Methods in a Battery Thermal Management System
,”
Appl. Therm. Eng.
,
227
, p.
120320
.
13.
Shan
,
S.
,
Li
,
L.
,
Xu
,
Q.
,
Ling
,
L.
,
Xie
,
Y. J.
,
Wang
,
H. K.
,
Zheng
,
K. Q.
,
Zhang
,
L. C.
, and
Bei
,
S. Y.
,
2023
, “
Numerical Investigation of a Compact and Lightweight Thermal Management System With Axially Mounted Cooling Tubes for Cylindrical Lithium-Ion Battery Module
,”
Energy
,
274
, p.
127410
.
14.
Adeniran
,
A.
, and
Park
,
S.
,
2023
, “
Optimized Cooling and Thermal Analysis of Lithium-Ion Pouch Cell Under Fast Charging Cycles for Electric Vehicles
,”
J. Energy Storage
,
68
, p.
107580
.
15.
Nazar
,
M. W.
,
Iqbal
,
N.
,
Ali
,
M.
,
Nazir
,
H.
, and
Amjad
,
M. Z. B.
,
2023
, “
Thermal Management of Li-Ion Battery by Using Active and Passive Cooling Method
,”
J. Energy Storage
,
61
, p.
106800
.
16.
Yu
,
Z. P.
,
Zhang
,
J. K.
, and
Pan
,
W. G.
,
2023
, “
A Review of Battery Thermal Management Systems About Heat Pipe and Phase Change Materials
,”
J. Energy Storage
,
62
, p.
106827
.
17.
Guo
,
Z. J.
,
Xu
,
Q. D.
,
Wang
,
Y.
,
Zhao
,
T. S.
, and
Ni
,
M.
,
2023
, “
Battery Thermal Management System with Heat Pipe Considering Battery Aging Effect
,”
Energy
,
263
, p.
126116
.
18.
Liang
,
L.
,
Zhao
,
Y. H.
,
Diao
,
Y. H.
,
Ren
,
R. Y.
,
Zhu
,
T. T.
, and
Li
,
Y.
,
2023
, “
Experimental Investigation of Preheating Performance of Lithium-Ion Battery Modules in Electric Vehicles Enhanced by Bending Flat Micro Heat Pipe Array
,”
Appl. Energy
,
337
, p.
120896
.
19.
Chavan
,
U.
,
Prajapati
,
O.
, and
Hujare
,
P.
,
2023
, “
Lithium Ion Battery Thermal Management by Using Coupled Heat Pipe and Liquid Cold Plate
,”
Mater. Today: Proc.
,
80
, pp.
382
388
.
20.
Yang
,
H. Z.
,
Li
,
M. X.
,
Wang
,
Z. H.
, and
Ma
,
B. J.
,
2023
, “
A Compact and Lightweight Hybrid Liquid Cooling System Coupling with Z-Type Cold Plates and PCM Composite for Battery Thermal Management
,”
Energy
,
263
, p.
126026
.
21.
Singh
,
L. K.
,
Kumar
,
R.
,
Gupta
,
A. K.
,
Sharma
,
A. K.
, and
Panchal
,
S.
,
2023
, “
Computational Study on Hybrid Air-PCM Cooling inside Lithium-Ion Battery Packs with Varying Number of Cells
,”
J. Energy Storage
,
67
, p.
107649
.
22.
Du
,
W. H.
, and
Chen
,
S.
,
2023
, “
Effect of Mechanical Vibration on Phase Change Material Based Thermal Management Module of a Lithium-Ion Battery at High Ambient Temperature
,”
J. Energy Storage
,
59
, p.
106465
.
23.
Yang
,
J. B.
,
Yu
,
Y.
,
Chen
,
S.
,
Luo
,
M. J.
,
Wu
,
Y. H.
, and
Zhou
,
Z. J.
,
2023
, “
Optimizing PCM-Fin Structure Li-Ion Battery Thermal Management System under Mechanical Vibrational Condition: A Comparative Study
,”
Int. J. Heat Mass Transfer
,
217
, p.
124669
.
24.
Fan
,
X.
,
Meng
,
C.
,
Yang
,
Y. W.
,
Lin
,
J. S.
,
Li
,
W. Y.
,
Zhao
,
Y. R.
,
Xie
,
S.
, and
Jiang
,
C. X.
,
2023
, “
Numerical Optimization of the Cooling Effect of a Bionic Fishbone Channel Liquid Cooling Plate for a Large Prismatic Lithium-Ion Battery Pack with High Discharge Rate
,”
J. Energy Storage
,
72
, p.
108239
.
25.
Yang
,
H. Z.
,
Wang
,
Z. H.
,
Li
,
M. X.
,
Ren
,
F. S.
, and
Feng
,
Y.
,
2023
, “
A Manifold Channel Liquid Cooling System with Low-Cost and High Temperature Uniformity for Lithium-Ion Battery Pack Thermal Management
,”
Therm. Sci. Eng. Prog.
,
41
, p.
101857
.
26.
Lin
,
S.
, and
Zhou
,
L. Q.
,
2023
, “
Thermal Performance of Rectangular Serpentine Mini-Channel Cooling System on Lithium Battery
,”
J. Clean. Prod.
,
418
, p.
138125
.
27.
Xie
,
J. K.
,
Liu
,
X. Y.
,
Zhang
,
G. Q.
, and
Yang
,
X. Q.
,
2023
, “
A Novel Strategy to Optimize the Liquid Cooling Plates for Battery Thermal Management by Precisely Tailoring the Internal Structure of the Flow Channels
,”
Int. J. Therm. Sci.
,
184
, p.
107877
.
28.
Liu
,
F. F.
,
Chen
,
Y. Y.
,
Qin
,
W.
, and
Li
,
J.
,
2023
, “
Optimal Design of Liquid Cooling Structure with Bionic Leaf Vein Branch Channel for Power Battery
,”
Appl. Therm. Eng.
,
218
, p.
119283
.
29.
Mitra
,
A.
,
Kumar
,
R.
, and
Singh
,
D. K.
,
2023
, “
Thermal Management of Lithium-Ion Batteries Using Carbon-Based Nanofluid Flowing Through Different Flow Channel Configurations
,”
J. Power Sources
,
555
, p.
232351
.
30.
Wang
,
Y. H.
,
Gao
,
T. Y.
,
Zhou
,
L.
,
Gong
,
J. Y.
, and
Li
,
J.
,
2023
, “
A Parametric Study of a Hybrid Battery Thermal Management System That Couples PCM with Wavy Microchannel Cold Plate
,”
Appl. Therm. Eng.
,
219
, p.
119625
.
31.
Anqi
,
A. E.
,
2023
, “
Numerical Investigation of Heat Transfer and Entropy Generation in Serpentine Microchannel on the Battery Cooling Plate Using Hydrophobic Wall and Nanofluid
,”
J. Energy Storage
,
66
, p.
106548
.
32.
Gao
,
R. J.
,
Fan
,
Z. H.
, and
Liu
,
S. T.
,
2022
, “
A Gradient Channel-Based Novel Design of Liquid-Cooled Battery Thermal Management System for Thermal Uniformity Improvement
,”
J. Energy Storage
,
48
, p.
104014
.
33.
Fan
,
Z. H.
,
Gao
,
R. J.
, and
Liu
,
S. T.
,
2022
, “
A Novel Battery Thermal Management System Based on P Type Triply Periodic Minimal Surface
,”
Int. J. Heat Mass Transfer
,
194
, p.
123090
.
34.
Chen
,
Z. L.
,
Li
,
C.
, and
Pan
,
M. Q.
,
2023
, “
A Structural Difference Design for Thermal Management to Improve the Temperature Uniformity of High Energy Density Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
221
, p.
119829
.
35.
Zhou
,
L.
,
Li
,
S.
,
Jain
,
A.
,
Chen
,
G.
,
Guo
,
D.
,
Kang
,
J.
, and
Zhao
,
Y.
,
2024
, “
Lithium Battery Thermal Management Based on Lightweight Stepped-Channel Liquid Cooling
,”
J. Electrochem. Energy Convers. Storage
,
21
(
3
), p.
031012
.
36.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.
37.
Dong
,
F.
,
Cheng
,
Z. Y.
,
Zhu
,
J. W.
,
Song
,
D. C.
, and
Ni
,
J.
,
2021
, “
Investigation and Optimization on Cooling Performance of a Novel Double Helix Structure for Cylindrical Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
189
, p.
116758
.
38.
Lai
,
Y. X.
,
Wu
,
W. X.
,
Chen
,
K.
,
Wang
,
S. F.
, and
Xin
,
C.
,
2019
, “
A Compact and Lightweight Liquid-Cooled Thermal Management Solution for Cylindrical Lithium-Ion Power Battery Pack
,”
Int. J. Heat Mass Transfer
,
144
, p.
118581
.
39.
Ye
,
M. K.
,
Chen
,
H. C.
, and
Koop
,
A.
,
2023
, “
Verification and Validation of CFD Simulations of the NTNU BT1 Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
234
, p.
105336
.
40.
Deng
,
Y. S.
,
Zhang
,
K. Q.
,
Yao
,
Z. G.
,
Zhao
,
H. L.
, and
Li
,
L.
,
2023
, “
Parametric Analysis and Multi-Objective Optimization of the Coupling Beam Pile Structure Foundation
,”
Ocean Eng.
,
280
, p.
114724
.
41.
Xue
,
W. R.
,
Qin
,
T.
,
Li
,
Q.
,
Zan
,
M. W.
,
Yu
,
X. Q.
, and
Li
,
H.
,
2022
, “
Exploiting the Synergistic Effects of Multiple Components with a Uniform Design Method for Developing Low-Temperature Electrolytes
,”
Energy Storage Mater.
,
50
, pp.
598
605
.
42.
Pandiselvam
,
R.
,
Prithviraj
,
V.
,
Manikantan
,
M. R.
,
Beegum
,
P. P. S.
,
Ramesh
,
S. V.
,
Padmanabhan
,
S.
,
Kothakota
,
A.
,
Mathew
,
A. C.
,
Hebbar
,
K. B.
, and
Khaneghah
,
A. M.
,
2022
, “
Central Composite Design, Pareto Analysis, and Artificial Neural Network for Modeling of Microwave Processing Parameters for Tender Coconut Water
,”
Meas. Food
,
5
, p.
100015
.
43.
Yang
,
L.
,
Li
,
X. M.
,
Shi
,
J. J.
,
Shen
,
F. X.
,
Qi
,
F.
,
Gao
,
B. B.
,
Chen
,
Z. Y.
,
Zhu
,
A. X.
, and
Zhou
,
C. H.
,
2020
, “
Evaluation of Conditioned Latin Hypercube Sampling for Soil Mapping Based on a Machine Learning Method
,”
Geoderma
,
369
, p.
114337
.
44.
Wang
,
Q. Y.
,
Nakashima
,
T.
,
Lai
,
C. G.
,
Mutsuda
,
H.
,
Kanehira
,
T.
,
Konishi
,
Y.
, and
Okuizumi
,
H.
,
2020
, “
Modified Algorithms for Fast Construction of Optimal Latin-Hypercube Design
,”
IEEE Access
,
8
, pp.
191644
191658
.
45.
Geetha
,
V.
,
Aprameya
,
K. S.
, and
Hinduja
,
D. M.
,
2020
, “
Dental Caries Diagnosis in Digital Radiographs Using Back-Propagation Neural Network
,”
Health Inf. Sci. Syst.
,
8
(
1
), p.
8
.
46.
Moosavi
,
S. R.
,
Vaferi
,
B.
, and
Wood
,
D. A.
,
2021
, “
Auto-Characterization of Naturally Fractured Reservoirs Drilled by Horizontal Well Using Multi-Output Least Squares Support Vector Regression
,”
Arabian J. Geosci.
,
14
(
7
), p.
545
.
47.
Kaymaz
,
I.
,
2005
, “
Application of Kriging Method to Structural Reliability Problems
,”
Struct. Saf.
,
27
(
2
), pp.
133
151
.
48.
Miaou
,
S. P.
,
Lu
,
A.
, and
Lum
,
H. S.
,
1996
, “
Pitfalls of Using R2 to Evaluate Goodness of Fit of Accident Prediction Models
,”
Transp. Res. Rec.
,
1542
(
1
), pp.
6
13
.
49.
Xue
,
Y.
,
Zhu
,
H. K.
, and
Neri
,
F.
,
2023
, “
A Feature Selection Approach Based on NSGA-II With ReliefF
,”
Appl. Soft Comput.
,
134
, p.
109987
.
50.
Liu
,
D.
,
Huang
,
Q.
,
Yang
,
Y. Y.
,
Liu
,
D. F.
, and
Wei
,
X. T.
,
2020
, “
BI-Objective Algorithm based on NSGA-II Framework to Optimize Reservoirs Operation
,”
J. Hydrol.
,
585
, p.
124830
.
You do not currently have access to this content.