The use of proton exchange membrane fuel cells (PEFC) based power trains and stationary systems has been technically demonstrated but is still far from commercial application. Technical development is still required to reach cost and durability targets, and to this aim, modeling and simulation are useful tools to obtain both better understanding of the fundamental occurring processes and to shorten design-associated costs and time. In this paper, a hierarchical 3D-1D approach is proposed, to overcome the deficiencies of a full 1D approach and the characteristic computational costs of a full 3D approach. The polymeric membrane and catalyst layers are represented by a local 1D model, while channels, gas diffusion layers, and solid electrodes are modeled by a full 3D approach. The model capabilities are first investigated with respect to experimental data by means of a full fuel cell simulation; the main chemical, fluid dynamic, and thermal fields are then analyzed in a straight channel configuration. The proposed 3D/1D model is able to accurately represent PEFC specific phenomena and their physical coupling. It could be then successfully applied to both design and development.

2.
Wang
,
C. Y.
, 2004, “
Fundamental Models for Fuel Cell Engineering
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
104
, pp.
4727
4766
.
3.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
, pp.
1151
1163
.
4.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model for the Solid-Polymer-Electrode Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2491
.
5.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
6.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Zawodzinski
,
T. A.
, 1993, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
2334
2342
.
7.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
,
106
, pp.
284
294
.
8.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2000, “
Three Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
30
, pp.
135
146
.
9.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
10.
He
,
W.
,
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 2000, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
0001-1541,
46
, pp.
2053
2064
.
11.
Hu
,
M.
,
Gu
,
A.
,
Wang
,
M.
,
Zhu
,
X.
, and
Yu
,
L.
, 2004, “
Three Dimensional, Two Phase Flow Mathematical Model for PEM Fuel Cell—Part I. Model Development
,”
Energy Convers. Manage.
0196-8904,
45
, pp.
1861
1882
.
12.
Hu
,
M.
,
Gu
,
A.
,
Wang
,
M.
,
Zhu
,
X.
, and
Yu
,
L.
, 2004, “
Three Dimensional, Two Phase Flow Mathematical Model for PEM Fuel Cell—Part II. Analysis and Discussion of the Internal Transport Mechanisms
,”
Energy Convers. Manage.
0196-8904,
45
, pp.
1883
1916
.
13.
Li
,
S.
, and
Becker
,
U.
, 2004, “
A Three Dimensional CFD Model for PEMFC
,” Second International Conference on Fuel Cell Science and Technology, New York, June 14-16.
14.
Mazumder
,
S.
, and
Cole
,
J. V.
, 2003, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
150
(
11
),
A1503
A1517
.
15.
Natarayan
,
D.
, and
Nguyen
,
T. V.
, 2003, “
Three-Dimensional Effects of Liquid Water Flooding in the Cathode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
115
, pp.
66
80
.
16.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2005, “
Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
A380
A390
.
17.
Shimpalee
,
S.
,
Greenway
,
S.
,
Spuckler
,
D.
, and
Van Zee
,
J. W.
, 2004, “
Predicting Water and Current Distributions in a Commercial-Size PEMFC
,”
J. Opt. (Paris)
0150-536X,
135
, pp.
79
87
.
18.
Sun
,
H.
,
Liu
,
H.
, and
Lie-Jin
,
G.
, 2005, “
PEM Fuel Cell and Its Two Phase Mass Transport
,”
J. Opt. (Paris)
0150-536X,
143
, pp.
125
135
.
19.
Wang
,
Z.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Opt. (Paris)
0150-536X,
94
, pp.
40
50
.
20.
You
,
L.
, and
Liu
,
H.
, 2002, “
A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2277
2287
.
21.
Wang
,
C.Y.
, and
Cheng
,
P.
, 1996, “
A Multiphase Mixture Model for Multiphase, Multi-Component Transport in Capillary Porous Media—I: Model Development
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
3607
3618
.
22.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer
, New York.
23.
Leverett
,
M.C.
, 1941, “
Capillary Behavior in Porous Solids
,”
Trans. AIME
0096-4778,
142
, pp.
152
169
.
24.
Andreassi
,
L.
,
Cordiner
,
S.
, and
Romanelli
,
F.
, 2003, “
Performances Analysis of PEM Fuel Cell Based Automotive Systems Under Transient Conditions
,” SAE Technical Paper No. 2003-01-1144.
25.
Zawodzinski
,
T. A.
,
Neeman
,
M.
,
Sillerud
,
L.
, and
Gottesfeld
,
S.
, 1991, “
Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes
,”
J. Phys. Chem.
0022-3654,
95
(
15
), p.
6040
6044
.
26.
Fluent, 2004, FLUENT 6.2, User Guide, 2004, Fluent, Inc., Lebanon, NH.
You do not currently have access to this content.