The support tubular proton exchange membranes (STPEMs) were fabricated successfully by impregnating porous silica pipe into a solution of perfluorinated resin. The structures of the inner, outer, and cross section of support PEM tube were characterized intensively by scanning electron microscopy observation. In addition, the conductivity and impermeability were measured by electrochemical impedance spectroscopy (EIS) and the bubble method, respectively. Results show that the conductivity of the PEM can reach as low as 1.46Sm when using the silica pipe of 0.7mm wall thickness. Subsequently, the ST membrane electrode assembly for direct methanol fuel cell (DMFC) and proton exchange membrane fuel cell (PEMFC) applications was prepared first by loading PtC and PtRuC catalyst ink onto the outer and inner surfaces of the PEM tube, respectively. The performances of the tubular DMFC and the PEMFC were tested on a self-made apparatus, which shows that the power density of tubular DMFC can reach 10mWcm2 when 4molL1 methanol solution flows through the anode at 80°C, and that the power density of tubular PEMFC can reach up to 60mWcm2 when hydrogen flows at the rates of 20mlmin1 through the anode at 60°C, both the cathodes adopting air-breathing mode.

1.
Maher
,
A. R.
, and
Al-Baghdadi
,
S.
, 2005, “
Modelling of Proton Exchange Membrane Fuel Cell Performance Based on Semi-Empirical Equations
,”
Renewable Energy
0960-1481,
30
, pp.
1587
1599
.
2.
Ren
,
X.
,
Zelenay
,
R.
,
Thomas
,
S.
,
Davey
,
J.
, and
Gottesfeld
,
S.
, 2000, “
Recent Advances in Direct Methanol Fuel Cells at Alamos National Laboratory
,”
J. Power Sources
0378-7753,
86
, pp.
111
116
.
3.
Steyn
,
W. J.
, 1998, “
Tubular Fuel Cell Assembly and Method of Manufacture
,” US Patent 6,007,932.
4.
Ishida
,
K.
,
Okada
,
T.
, and
Ishida
,
M.
, 2002, “
Micro-Tubular Direct Methanol Fuel Cell for Portable Applications
,”
Electrochemistry (Tokyo, Jpn.)
1344-3542,
12
, pp.
975
979
.
5.
Kimble
,
M. C
, and
Anderson
,
E. B.
, 2000, “
Electrochemical Performance of a Multi-Tubular Fuel Cell and Electrolyzer Array
,”
Proceedings of the Intersociety Energy Conversion Engineering Conference
, pp.
428
433
.
6.
Qiao
,
H.
,
Kunimatsul
,
M.
, and
Okada
,
T.
, 2005, “
Pt Catalyst Configuration by a New Plating Process for a Microtubular DMFC Cathode
,”
J. Power Sources
0378-7753,
139
, pp.
30
34
.
8.
Bahar
,
B.
,
Hobson
,
A. R.
,
Kolde
,
J.
, and
Zuckerbrod
,
D.
, 1996, “
Ultra-Thin Integral Composite Membrane
,” U.S. Patent 5,547,551.
9.
Steck
,
A. E.
, and
Stone
,
C.
, 1998, “
Substituted α, β, β-Trifluorostyrene-Based Composite Membranes
,” U.S. Patent 5,834,523.
10.
Spethmann
,
J. E.
, and
Keating
,
J. T.
, 1998, “
Composite Membrane With Highly Crystalline Porous Support
,” U.S. Patent 6,110,333.
11.
Banerjee
,
S.
, and
Summers
,
J. D.
, 1998, “
Process for Making Composite Ion Exchange Membranes
,” U.S. Patent 6,156,451.
12.
Penner
,
R. M.
, and
Martin
,
C. R.
, 1985, “
Ion-Transporting Composite Membranes. I. Nafion-Impregnated Gore-Tex Membranes
,”
J. Electrochem. Soc.
0013-4651,
132
, pp.
514
515
.
13.
Liu
,
C.
, and
Martin
,
C. R.
, 1990, “
Ion-Transporting Composite Membranes. II. Ion Transport Mechanism in Nafion-Impregnated Gore-Tex Membranes
,”
J. Electrochem. Soc.
0013-4651,
137
, pp.
510
515
.
14.
Liu
,
C.
, and
Martin
,
C. R.
, 1990, “
Ion-Transporting Composite Membranes. III. Selectivity and Rate of Ion Transport in Nafion-Impregnated Gore-Tex Membranes Prepared by a High Temperature Solution-Casting Method
,
J. Electrochem. Soc.
0013-4651,
137
, pp.
3114
3120
.
15.
Nouel
,
K. M.
, and
Fedkiw
,
P. S.
, 1998, “
Nafion®-Based Composite Polymer Electrolyte Membranes
,”
Electrochim. Acta
0013-4686,
43
, pp.
2381
2387
.
16.
Verbrugge
,
M. W.
,
Hill
,
R. F.
, and
Schneider
,
E. W.
, 1992, “
Composite Membranes for Fuel Cell Applications
,”
AIChE J.
0001-1541,
38
, pp.
93
100
.
17.
Bahar
,
B.
,
Hobson
,
A. R.
, and
Kolde
,
J. A.
, 1996, “
Ultra-Thin Integral Composite Membrane
,” U.S. Patent 5,547,551.
18.
Liu
,
F.
,
Yi
,
B.
,
Xing
,
D.
,
Yu
,
J.
, and
Zhang
,
H.
, 2003, “
Nafion∕PTFE Composite Membranes for Fuel Cell Applications
,”
J. Membr. Sci.
0376-7388,
212
, pp.
213
223
.
19.
Charpin
,
J.
,
Burggraf
,
A. J.
, and
Cot
,
L.
, 1991, “
Survey of Ceramic Membranes for Separations in Liquid and Gaseous Media
,”
Ind. Ceram.
1121-7588,
11
, pp.
84
90
.
20.
Kai
,
T.
,
Yamaguchi
,
T.
, and
Nakao
,
S.
, 2000, “
Preparation of Organic∕Inorganic Composite Membranes by Plasma-Graft Filling Polymerization Technique for Organic-Liquid Separation
,”
Ind. Eng. Chem. Res.
0888-5885,
39
, pp.
3284
3290
.
21.
Jou
,
J. D.
,
Yoshida
,
W.
, and
Cohen
,
Y.
, 1999, “
A Novel Ceramic-Supported Polymer Membrane for Pervaporation of Dilute Volatile Organic Compounds
,”
J. Membr. Sci.
0376-7388,
162
, pp.
269
284.
.
22.
Song
,
K. M.
, and
Hong
,
W. H.
, 1997, “
Dehydration of Ethanol and Isopropanol Using Tubular Type Cellulose Acetate Membrane With Ceramic Support in Pervaporation Process
,”
J. Membr. Sci.
0376-7388,
123
, pp.
27
33
.
23.
Zhu
,
Y.
,
Minet
,
R. G.
, and
Tsotsis
,
T. T.
, 1996, “
A Continuous Pervaporation Membrane Reactor for the Study of Esterification Reactions Using a Composite Polymeric∕Ceramic Membrane
,”
Chem. Eng. Sci.
0009-2509,
51
(
17
), pp.
4103
4113
.
24.
Zhu
,
Y.
, and
Chen
,
H.
, 1998, “
Pervaporation Separation and Pervaporation-Esterification Coupling Using Crosslinked PVA Composite Catalytic Membranes on Porous Ceramic Plate
,”
J. Membr. Sci.
0376-7388,
138
, pp.
123
134
.
25.
Sakohara
,
S.
,
Muramoto
,
F.
,
Sakata
,
T.
, and
Asaeda
,
M.
, 1990, “
Separation of Acetone∕Water Mixture by Thin Acrylamide Gel Membrane Prepared in Pores of Thin Ceramic Membrane
,”
J. Chem. Eng. Jpn.
0021-9592,
23
, pp.
40
45
.
26.
Subrahmanyan
,
V.
, and
Lakshminarayanaiah
,
N.
, 1968, “
A Rapid Method for Determination of Electrical Conductance of Ion-Exchange Membrane
,”
J. Phys. Chem.
0022-3654,
72
(
12
), pp.
4314
4316
.
27.
Strathmann
,
H.
, 1996,
Ion-Exchange Membrane Separation Processes
, 1st ed., Amsterdam, Boston, pp.
241
244
.
28.
Zawodzinski
,
T. A.
,
Neeman
,
M.
,
Sillerud
,
L. O.
, and
Gottesfeld
,
S.
, 1991, “
Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes
,
J. Phys. Chem.
0022-3654,
15
, pp.
6040
6044
.
29.
Linkov
,
V. M.
, and
Belyakov
,
V. N.
, 2001, “
Novel Ceramic Membranes for Electrodialysis
,”
Sep. Purif. Technol.
1383-5866,
25
, pp.
57
63
.
30.
Davey
,
J.
,
Wilson
,
M.
, and
Valerio
,
J.
, 2005, “
Overview of Fuel Cell MEAs at Los Alamos National Laboratory
,
First Symposium on MEA Manufacturing
, Dayton, pp.
398
427
.
31.
Yi
,
B. L.
, 2003,
Fuel Cell-Principle, Technology and Application
,
Chemical Industry
,
Beijing
, p.
41
.
32.
Chen
,
C. Y.
, and
Yang
,
P.
, 2003, “
Performance of an Air-Breathing Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
123
pp.
37
42
.
33.
Moore
,
J. M.
,
Lakeman
,
J. B.
, and
Mepsted
,
G. O.
, 2002, “
Development of a PEM Fuel Cell Powered Portable Field Generator for the Dismounted Soldier
,”
J. Power Sources
0378-7753,
106
, pp.
16
20
.
34.
Goldman
,
M.
,
Fraenkel
,
D.
, and
Levin
,
G.
, 1989, “
Zeolite∕Polymer Membrane of Separation for Ethanol-Water Azeotrope
,”
J. Appl. Polym. Sci.
0021-8995,
37
, pp.
1791
1800
.
35.
Ulutan
,
S.
, and
Nakagawa
,
T.
, 1998, “
Separability of Ethanol and Water Mixtures Through PTMSP-Silica Membranes in Pervaporation
,”
J. Membr. Sci.
0376-7388,
143
, pp.
275
284
.
36.
Jun
,
Zh.
, 2002, “
A Study on the Membrane Electrode Assembly of Liquid Feed Direct Methanol Fuel Cells
,” doctoral dissertation, Tianjin University, Vol. 12, pp.
24
25
.
You do not currently have access to this content.