The constitutive response of perfluorinated sulfonic acid (PFSA) membranes based on tensile testing is investigated, and a phenomenological constitutive model for the elastoplastic flow behavior as a function of temperature and humidity is proposed. To this end, the G’Sell–Jonas (1979, “Determination of the Plastic Behavior of Solid Polymers at Constant True Strain Rate,” J. Mater. Sci., 14, pp. 583–591) constitutive model for semicrystalline polymers is extended by incorporating, in addition to temperature, relationships between the material constants of this model and the measured relative humidity. By matching the proposed constitutive model to the experimental stress-strain data, useful material constants are found. Furthermore, correlations between these material constants and Young’s modulus and proportional limit stress are investigated. The influence of material orientation, inherited from processing conditions, on the stress-strain behavior is also studied. The proposed model can be used to approximate the mechanical behavior of PFSA membranes in numerical simulations of a fuel cell operation.

1.
Beuscher
,
U.
,
Cleghorn
,
S. J. C.
, and
Johnson
,
W. B.
, 2005, “
Challenges for PEM Fuel Cell Membranes
,”
Int. J. Energy Res.
0363-907X,
29
, pp.
1103
1112
.
2.
Cleghorn
,
S.
,
Kolde
,
J.
, and
Liu
,
W.
, 2003, “
Catalyst Coated Composites Membranes
,”
V.
Wolf
,
L.
Arnold
, and
G.
Hubert
, eds.,
Handbook of Fuel Cells: Fundamentals, Technology and Applications
,
Wiley
,
New York
.
3.
Rajendran
,
R. G.
, 2005, “
Polymer Electrolyte Membrane Technology for Fuel Cells
,”
MRS Bull.
0883-7694,
30
, pp.
587
590
.
4.
Smitha
,
B.
,
Sridhar
,
S.
, and
Khan
,
A. A.
, 2005, “
Solid Polymer Electrolyte Membranes for Fuel Cell Applications—A New Review
,”
J. Membr. Sci.
0376-7388,
259
, pp.
10
26
.
5.
Mauritz
,
K. A.
, and
Moore
,
R. B.
, 2004, “
State of Understanding of Nafion
,”
Chem. Rev.
0009-2665,
104
, pp.
4535
4585
.
6.
Gierke
,
T. D.
,
Munn
,
G. E.
, and
Wilson
,
F. C.
, 1981, “
Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide- and Small-Angle X-Ray Studies
,”
J. Polym. Sci., Polym. Phys. Ed.
0098-1273,
19
, pp.
1687
1704
.
7.
Kundu
,
S.
,
Fowler
,
M. W.
,
Simon
,
L. C.
, and
Grot
,
S.
, 2006, “
Morphological Features (Defects) in Fuel Cell Membrane Electrode Assemblies
,”
J. Power Sources
0378-7753,
157
, pp.
650
656
.
8.
Crum
,
M.
, and
Liu
,
W.
, 2006, “
Effective Testing Matrix for Studying the Membrane Durability in PEM Fuel Cells: Part 2. Mechanical Durability and Combined Mechanical and Chemical Durability
,”
Transactions 210 ECS Meeting
,
Cancun, Mexico
, October 29–November 3, 2006.
9.
Liu
,
W.
,
Ruth
,
K.
, and
Rusch
,
G.
, 2001, “
Membrane Durability in PEM Fuel Cells
,”
J. New Mater. Electrochem. Syst.
1480-2422,
4
, pp.
227
232
.
10.
Stanic
,
V.
, and
Hoberecht
,
M.
, 2004, “
Mechanism of Pin-Hole Formation in Membrane Electrode Assemblies for PEM Fuel Cells
,”
Meeting of the Electrochemical Society
,
Honolulu, HI
, 3–8 Oct. 2004, p.
1891
.
11.
Xie
,
J.
,
Wood
,
D. L.
, III
,
Wayne
,
D. M.
,
Zawodzinski
,
T. A.
,
Atanassov
,
P.
, and
Borup
,
R. L.
, 2005, “
Durability of PEFCs at High Humidity Conditions
,”
J. Electrochem. Soc.
0013-4651,
152
, pp.
104
113
.
12.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2006, “
Mechanical Response of Fuel Cell Membranes Subjected to a Hygro-thermal Cycle
,”
J. Power Sources
0378-7753,
161
, pp.
987
996
.
13.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2007, “
Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses
,”
J. Power Sources
0378-7753,
170
, pp.
345
358
.
14.
Tang
,
Y.
,
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2008, “
Mechanical Properties of a Reinforced Composite Polymer Electrolyte Membrane and Its Simulated Performance in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
175
, pp.
817
825
.
15.
Lai
,
Y.-H.
,
Gittleman
,
C. S.
,
Mittelsteadt
,
C. K.
, and
Dillard
,
D. A.
, 2005, “
Viscoelastic Stress Model and Mechanical Characterizaton of Perfluorosulfonic Acid, (PFSA) Polymer Electrolyte Membranes
,”
Proceedings of the Third International Conference on Fuel Cell Science, Engineering, and Technology
,
Ypsilanti, MI
, May 23–25, pp.
161
167
.
16.
Tang
,
Y.
,
Santare
,
M. H.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2005, “
Stresses in Proton Exchange Membranes Due to Hydrahon-Dehydration Cycles
,”
Proceedings of the Third International Conference on Fuel Cell Science, Engineering, and Technology
,
Ypsilanti, MI
, May 23–25, pp.
207
213
.
17.
Huang
,
X.
,
Solasi
,
R.
,
Zou
,
Y.
,
Feshler
,
M.
,
Reifsnider
,
K.
,
Condit
,
D.
,
Burlatsky
,
S.
, and
Madden
,
T.
, 2006, “
Mechanical Endurance of Polymer Electrolyte Membrane and PEM Fuel Cell Durability
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
, pp.
2346
2357
.
18.
Solasi
,
R.
,
Zou
,
Y.
,
Huang
,
X.
,
Reifsnider
,
K.
, and
Condit
,
D.
, 2007, “
On Mechanical Behavior and In-Plane Modeling of Constrained PEM Fuel Cell Membranes Subjected to Hydration and Temperature Cycles
,”
J. Power Sources
0378-7753,
167
, pp.
366
377
.
19.
Curtin
,
D. E.
,
Lousenberg
,
R. D.
,
Henry
,
T. J.
,
Tangeman
,
P. C.
, and
Tisack
,
M. E.
, 2004, “
Advanced Materials for Improved PEMFC Performance and Life
,”
J. Power Sources
0378-7753,
131
, pp.
41
48
.
20.
Bergstrom
,
J. S.
, and
Hilbert
,
L. B.
, Jr.
, 2005, “
A Constitutive Model for Predicting the Large Deformation Thermochemical Behavior of Fluoropolymers
,”
Mech. Mater.
0167-6636,
37
, pp.
899
913
.
21.
Kletschkowski
,
T.
,
Schomburg
,
U.
, and
Bertram
,
A.
, 2002, “
Endochronic Viscoplastic Material Models for Filled PTFE
,”
Mech. Mater.
0167-6636,
34
, pp.
795
808
.
22.
Khan
,
A.
, and
Zhang
,
H. Y.
, 2001, “
Finite Deformation of a Polymer: Experiments and Modeling
,”
Int. J. Plast.
0749-6419,
17
, pp.
1167
1188
.
23.
Tang
,
Y.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Gilbert
,
M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
, 2006, “
An Experimental Investigation of Humidity and Temperature Effects on the Mechanical Properties of Perfluorosulfonic Acid Membrane
,”
Mater. Sci. Eng., A
0921-5093,
425
, pp.
297
304
.
24.
Bauer
,
F.
,
Denneler
,
S.
, and
Willert-Porada
,
M.
, 2005, “
Influence of Temperature and Humidity on the Mechanical Properties of Nafion® 117 Polymer Electrolyte Membrane
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
43
, pp.
786
795
.
25.
Kundu
,
S.
,
Simon
,
L. C.
,
Fowler
,
M.
, and
Grot
,
S.
, 2005, “
Mechanical Properties of Nafion® Electrolyte Membranes Under Hydrated Conditions
,”
Polymer
0032-3861,
46
, pp.
11707
11715
.
26.
Liu
,
D.
,
Kyriakides
,
S.
,
Case
,
S. W.
,
Lesko
,
J. J.
,
Li
,
Y. X.
, and
McGrath
,
J. E.
, 2006, “
Tensile Behavior of Nafion and Sulfonated Poly(Arylene Ether Sulfone) Copolymer Membranes and Its Morphological Correlations
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
, pp.
1453
1465
.
27.
Kawano
,
Y.
,
Wang
,
T.
,
Palmer
,
R. A.
, and
Aubuchon
,
S. R.
, 2002, “Stress-Strain Curves of Nafion Membranes in Acid and Salt Forms,” Polímeros: Ciência e Tecnologia, 12, pp. 96–101.
28.
G’Sell
,
C.
, and
Jonas
,
J. J.
, 1979, “
Determination of the Plastic Behavior of Solid Polymers at Constant True Strain Rate
,”
J. Mater. Sci.
0022-2461,
14
, pp.
583
591
.
29.
Duan
,
Y.
,
Saigal
,
A.
,
Greif
,
R.
, and
Zimmerman
,
M. A.
, 2001, “
A Uniform Phenomenological Constitutive Model for Glassy and Semicrystalline Polymers
,”
Polym. Eng. Sci.
0032-3888,
41
, pp.
1322
1328
.
30.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
31.
Weber
,
A. Z.
, and
Newman
,
J.
, 2004, “
Transport in Polymer-Electrolyte Membranes: II. Mathematical Model
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
311
325
.
32.
Jalani
,
N. H.
,
Choi
,
P.
, and
Datta
,
R.
, 2005, “
TEOM: A Novel Technique for Investigating Sorption in Proton-Exchange Membranes
,”
J. Membr. Sci.
0376-7388,
254
, pp.
31
38
.
33.
van der Heijden
,
P. C.
,
Rubatat
,
L.
, and
Diat
,
O.
, 2004, “
Orientation of Drawn Nafion at Molecular and Mesocopic Scales
,”
Macromolecules
0024-9297,
37
, pp.
5327
5336
.
34.
Gebel
,
G.
, and
Diat
,
O.
, 2005, “
Neutron and X-Ray Scattering: Suitable Tools for Studying Ionomer Membranes
,”
Fuel Cells
1615-6846,
5
, pp.
261
276
.
35.
de Almeida
,
S. H.
, and
Kawano
,
Y.
, 1999, “
Thermal Behavior of Nafion Membranes
,”
J. Therm Anal. Calorim.
1418-2874,
58
, pp.
569
577
.
36.
Yeo
,
S. C.
, and
Eisenberg
,
A.
, 1977, “
Physical Properties and Supermolecular Structure of Perfluorinated Ion-Containing (Nafion) Polymers
,”
J. Appl. Polym. Sci.
0021-8995,
21
, pp.
875
898
.
You do not currently have access to this content.