The knowledge of the stress distribution in the ceramic components of a solid oxide fuel cell (SOFC) is a prerequisite for assessing the risk of failure due to crack formation as well as for predicting its durability. Due to the high temperature span associated with thermal cycles, high thermal gradients, and the mismatch of thermal and mechanical properties of the ceramic components, thermomechanical stress is of particular importance in SOFC. A finite-element mechanical model of a tubular SOFC is developed and combined with a 2D thermo-electrochemical model in order to provide realistic temperature profiles to the finite-element analysis of the ceramic SOFC membrane-electrode assembly (MEA). The resulting simulation tool is employed for three different analyses: In the first analysis, temperature profiles provided by the thermo-electrochemical model are used to show the impact of direct versus indirect internal reformation of methane on thermomechanical stress in the MEA. In order to clarify the contribution of temperature level and thermal gradients to the emergence of stress, the second analysis systematically investigates the stress distribution with assumed temperature profiles. In the third analysis, particular attention is given to the influence of thermal model accuracy on the results. For this purpose, three modeling cases are provided: (i) Heat sources resulting from the anodic and cathodic half-reactions are considered separately in thermal modeling. (ii) According to a frequently used simplification in SOFC modeling, all heat released by the reaction of hydrogen and oxygen is assigned to the anode/electrolyte interface. (iii) The temperature profile is averaged in the radial direction. The results reveal a strong dependence of thermomechanical stress on the methane reforming strategy, which confirms the importance of a careful control of operating conditions. The effect of temperature level on maximum tensile thermomechanical stress is found to dominate by one order of magnitude over that of typical thermal gradients occurring in the SOFC during operation. In contrast to the high relevance commonly ascribed to thermal gradients, the results show that in the tubular SOFC thermal gradients play only a minor role for the emergence of stress. Concerning model accuracy, the separate consideration of half-reactions at the electrodes is found to be not necessary, while the results clearly emphasize the importance of radially discretized thermal modeling for the model-based prediction of thermal stress.

1.
Johnson
,
J. B.
, 2004, “
Fracture Failure of Solid Oxide Fuel Cells
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
2.
Reifsnider
,
K. L.
, and
Huang
,
X.
, 2001, “
Thermal Stress and Long-Term Behavior of Layered Ceramic Thin Film Composites: A Foundation for Solid Oxide Fuel Cell Technology
,”
Proceedings of the 16th Annual Conference of the American Society for Composites
,
Blacksburg, VA
, Sept. 9–12.
3.
Lin
,
C.-K.
,
Chen
,
T.-T.
,
Chyou
,
Y.-P.
, and
Chiang
,
L.-K.
, 2007, “
Thermal Stress Analysis of a Planar SOFC stack
,”
J. Power Sources
,
164
, pp.
238
251
. 0378-7753
4.
Yakabe
,
H.
,
Baba
,
Y.
,
Sakurai
,
T.
, and
Yoshitaka
,
Y.
, 2004, “
Evaluation of the Residual Stress for Anode-Supported SOFCs
,”
J. Power Sources
0378-7753,
135
(
1-2
), pp.
9
16
.
5.
Fischer
,
W.
,
Malzbender
,
J.
,
Blass
,
G.
, and
Steinbrech
,
R. W.
, 2005, “
Residual Stresses in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
150
, pp.
73
77
.
6.
Selçuk
,
A.
,
Merere
,
G.
, and
Atkinson
,
A.
, 2001, “
The Influence of Electrodes on the Strength of Planar Zirconia Solid Oxide Fuel Cells
,”
J. Mater. Sci.
,
36
, pp.
1173
1182
. 1072-3374
7.
Montross
,
C. S.
,
Yokokawa
,
H.
, and
Dokiya
,
M.
, 2002, “
Thermal Stress in Planar Solid Oxide Fuel Cells Due to Thermal Expansion Differences
,”
Br. Ceram. Trans.
,
101
(
3
), pp.
85
93
. 0967-9782
8.
Selimovic
,
A.
,
Kemm
,
M.
,
Torisson
,
T.
, and
Assadi
,
M.
, 2005, “
Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
145
, pp.
463
469
.
9.
Laurencin
,
J.
,
Morel
,
B.
,
Bultel
,
Y.
, and
Lefebvre-Joud
,
F.
, 2006, “
Thermo-Mechanical Model of Solid Oxide Fuel Cell Fed With Methane
,”
Fuel Cells
1615-6846,
6
(
1
), pp.
64
70
.
10.
Kanamura
,
K.
, and
Takehara
,
Z.
, 1993, “
Temperature and Thermal Stress Distribution in a Tubular Solid Oxide Fuel Cell
,”
Bull. Chem. Soc. Jpn.
0009-2673,
66
(
10
), pp.
2797
2803
.
11.
Van Herle
,
J.
,
Ihringer
,
R.
,
Sammes
,
N.M.
,
Tompsett
,
G.
,
Kendall
,
K.
,
Yamada
,
Y.
,
Wen
,
C.
,
Kawada
,
T.
,
Ihara
,
M.
, and
Mizusaki
,
J.
, 2000, “
Concept and Technology of SOFC for Electric Vehicles
,”
Solid State Ionics
0167-2738,
132
(
3–4
), pp.
333
342
.
12.
Nakajo
,
A.
,
Stiller
,
C.
,
Härkegard
,
G.
, and
Bolland
,
O.
, 2006, “
Modelling of Thermal Stresses and Probability of Survival of Tubular SOFC
,”
J. Power Sources
,
158
, pp.
287
294
. 0378-7753
13.
Singhal
,
S. C.
, 2006, “
Solid Oxide Fuel Cells—State of the Art
,”
Presentation at the International Conference and Trade Fair on Hydrogen and Fuel Cell Technologies (H2Expo)
, Hamburg, Germany, Oct. 25–26.
14.
Otschik
,
P.
,
Kuznecov
,
M.
,
Trofimenko
,
N.
,
Ziesche
,
S.
,
Eichler
,
K.
, and
Lucke
,
K.
, 2005, “
Cofiring-Technologie zur Realisierung Tubularer SOFC-Zellen mit Pulver-Dispersionen
,”
Fraunhofer Institut fuer Keramische Technologien und Sinterwerkstoffe
, Final Report on the
BMWi
-Funded Project No. 0326873.
15.
Singhal
,
S. C.
, 2000, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
0167-2738,
135
(
1–4
), pp.
305
313
.
16.
Huang
,
K.
, 2006, “
Cell Power Enhancement via Materials Selection
,”
Proceedings of the Seventh European SOFC Forum
, Lucerne, Switzerland, Jul. 3–7.
17.
Bauer
,
C.
,
Datz
,
A.
,
Fleck
,
R.
,
Greiner
,
H.
,
Grosse
,
J.
,
Ise
,
M.
,
Kleinlein
,
W.
,
Landes
,
H.
,
Landgraf
,
N.
,
Poppinger
,
M.
,
Schricker
,
B.
,
Straub
,
W.
,
Lange
,
F.
,
Menzler
,
N.
,
Ruckdäschel
,
R.
, and
Schiller
,
G.
, 2005, “
Entwicklung von Hochtemperatur-Brennstoffzellen (SOFC) der Zweiten Generation
,” Final Report on the
BMBF
-Funded Project No. 0327078A, Siemens Report No. AG/FZJ/DLR.
18.
Huang
,
K.
, 2001, “
Lower Temperature Electrolyte and Electrode Materials
,”
Siemens Westinghouse Power Corporation
, Semiannual Technical Report of DOE Project No. DE-AC26-99FT40709.
19.
Mori
,
M.
,
Yamamoto
,
T.
, and
Itoh
,
H.
, 1998, “
Thermal Expansion of Nickel-Zirconia Anodes in Solid Oxide Fuel Cells During Fabrication and Operation
,”
J. Electrochem. Soc.
0013-4651,
145
(
4
), pp.
1374
1381
.
20.
Selcuk
,
A.
, and
Atkinson
,
A.
, 2000, “
Strength and Toughness of Tape-Cast Yttria-Stabilized Zirconia
,”
J. Am. Ceram. Soc.
,
83
(
8
), pp.
2029
2035
. 0002-7820
21.
Radovic
,
M.
,
Lara-Curzio
,
E.
,
Trejo
,
R. M.
,
Wang
,
H.
, and
Porter
,
W. D.
, 2006, “
Thermophysical Properties of YSZ and Ni-YSZ as a Function of Temperature and Porosity
,”
Proceedings of the 30th Annual International Conference on Advanced Ceramics and Composites
, Cocoa Beach, FL, Jan. 22–27.
22.
Finkenwirth
,
O.
, 2005, “
Einfluss des Fertigungsprozesses auf die Mechani-schen und Elektrochemischen Eigenschaften Plasmagespritzter Festelektrolyt-Brennstoffzellen (SOFC)
,” Ph.D. thesis, Universitaet Stuttgart, Stuttgart, Germany.
23.
Huang
,
K.
, 2004, “
Gas-Diffusion Process in a Tubular Cathode Substrate of a SOFC. II: Identification of Gas-Diffusion Process Using AC Impedance Method
,”
J. Electrochem. Soc.
0013-4651,
151
(
5
), pp.
H117
H121
.
24.
Atkinson
,
A.
, and
Selcuk
,
A.
, 2000, “
Mechanical Behavior of Ceramic Oxygen Ionconducting Membranes
,”
Solid State Ionics
0167-2738,
134
, pp.
59
66
.
25.
Fischer
,
K.
, and
Seume
,
J. R.
, 2008, “
Location and Magnitude of Heat Sources in Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
6
, p.
011002
.
26.
Campanari
,
S.
, 2001, “
Thermodynamic Model and Parametric Analysis of a Tubular SOFC Module
,”
J. Power Sources
0378-7753,
92
(
1-2
), pp.
26
34
.
27.
Santarelli
,
M. G.
,
Leone
,
P.
,
Cali
,
M.
, and
Orsello
,
G.
, 2007, “
Experimental Analysis of the Voltage and Temperature Behavior of a Solid Oxide Fuel Cell Generator
,”
J. Fuel Cell Sci. Technol.
1550-624X,
4
, pp.
143
153
.
You do not currently have access to this content.