The pressing environmental and political necessities of modern international society call for a suitable array of contingency solutions to the energy question. One valid alternative to fossil fuels, for example, is the use of alternative or nonconventional fuels, derived from waste or biomass. Combining these resources with fuel cell applications would provide a significant contribution to environmentally friendly and efficient energy use. Through a comprehensive literature survey and the collection of practical case studies and operational experience, an assessment of the potential for coupling with high-temperature fuel cells of three technologies of alternative fuel production—landfill, anaerobic digestion, and gasification—has been attempted. Though landfill is the easiest technology, anaerobic digestion produces superior quality gas and has the benefit of yielding extra fertilizer, in the form of digestate. Gasification is the most demanding of the technologies but is very flexible in its feedstock. Furthermore, using steam as a gasifying agent produces high quality syngas. However, the main issue with all three technologies is the removal of contaminants, in particular, sulfur. The application of high-temperature gas cleanup is demonstrated to bring considerable advantages on system level when gasification of nonconventional fuels is considered. Ultimately, the reforming step is a key aspect for optimal cost-effective integration of these alternative systems. The review provided establishes the key characteristics of alternative fuel conversion by landfill, anaerobic digestion, and gasification, and exposes the major points of attention for their subsequent application in high-temperature fuel cells. Indications of the measures required and the developments in the field of basic research and system integration are given to provide clear paths of activity, which should bring about the wide-scale implementation of a truly promising application of fuel cell systems.

1.
Heinimö
,
J.
,
Pakarinen
,
V.
,
Ojanen
,
V.
, and
Kässi
,
T.
, 2007,
International Bioenergy Trade: Scenario Study on International Biomass Market in 2020
,
IEA-Bioenergy Task 40
.
2.
Akay
,
G.
,
Dogru
,
M.
,
Calkan
,
O. F.
, and
Calkan
,
B.
, 2005, “
Biomass Processing in Biofuel Applications
,”
Biofuels for Fuel Cells
,
P.
Lens
,
P.
Westermann
,
M.
Haberbauer
, and
A.
Moreno
, eds.,
IWA
, pp.
51
75
.
3.
Clark
,
K. D.
,
Costen
,
P. G.
,
Fowler
,
G. D.
,
Lockwood
,
F. C.
, and
Yousif
,
S.
, 2002, “
The Influence of Combustion Configuration and Fuel Type on Heavy Metal Emissions From a Pulverised Fuel Fired Combustor
,”
IFRF Combustion Journal
, Article 200201.
4.
Guo
,
B.
,
Li
,
D.
,
Cheng
,
C.
,
,
Z.
, and
Shen
,
Y.
, 2001, “
Simulation of Biomass Gasification With a Hybrid Neural Network Model
,”
Bioresour. Technol.
,
76
, pp.
77
83
. 0960-8524
5.
Donolo
,
G.
,
De Simon
,
G.
, and
Fermeglia
,
M.
, 2006, “
Steady State Simulation of Energy Production From Biomass by Molten Carbonate Fuel Cells
,”
J. Power Sources
,
158
, pp.
1282
1289
. 0378-7753
6.
Koch
,
T.
, 2007, TK Energy, Communication at the Conference Success & Visions for Bioenergy, Salzburg (AT), Mar. 22–23.
7.
2007, EurObserv’ER-Biogas Barometer.
8.
Iannelli
,
R.
, and
Moreno
,
A.
, 2005, “
Application of Molten Carbonate Fuel Cells for the Exploitation of Landfill Gas
,”
Biofuels for Fuel Cells
,
P.
Lens
,
P.
Westermann
,
M.
Haberbauer
, and
A.
Moreno
, eds.,
IWA
, pp.
495
508
.
9.
Spiegel
,
R. J.
,
Preston
,
J. L.
, and
Trocciola
,
J. C.
, 1999, “
Fuel Cell Operation on Landfill Gas at Penrose Power Station
,”
Energy
,
24
, pp.
723
742
. 0360-5442
10.
Franco
,
C.
,
Pinto
,
F.
,
Gulyurtlu
,
I.
, and
Cabrita
,
I.
, 2003, “
The Study of Reactions Influencing the Biomass Steam Gasification Process
,”
Fuel
0016-2361,
82
, pp.
835
842
.
11.
Tomasi
,
C.
,
Baratieri
,
M.
,
Bosio
,
B.
,
Arato
,
E.
, and
Baggio
,
P.
, 2006, “
Process Analysis of a Molten Carbonate Fuel Cell Power Plant Fed With a Biomass Syngas
,”
J. Power Sources
0378-7753,
157
, pp.
765
774
.
12.
Iaquaniello
,
G.
, and
Mangiapane
,
A.
, 2006, “
Integration of Biomass Gasification With MCFC
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
399
404
.
13.
Haberbauer
,
M.
, 2005, “
Biofuel Quality for Fuel Cell Applications
,”
Biofuels for Fuel Cells
,
P.
Lens
,
P.
Westermann
,
M.
Haberbauer
, and
A.
Moreno
, eds.,
IWA
, pp.
403
413
.
14.
EG&G Technical Services, 2002,
Fuel Cell Handbook
, 6th ed.,
EG&G Technical Services, Inc.
15.
Moreno
,
A.
,
Bove
,
R.
,
Lunghi
,
P.
, and
Sammes
,
N. M.
, 2005, “
High-Temperature Fuel Cells
,”
Biofuels for Fuel Cells
,
P.
Lens
,
P.
Westermann
,
M.
Haberbauer
, and
A.
Moreno
, eds.,
IWA
, pp.
313
348
.
16.
Accettola
,
F.
, and
Haberbauer
,
M.
, 2005, “
Control of Siloxanes
,”
Biofuels for Fuel Cells
,
P.
Lens
,
P.
Westermann
,
M.
Haberbauer
, and
A.
Moreno
, eds.,
IWA
, pp.
445
454
.
17.
Kawase
,
M.
,
Mugikura
,
Y.
, and
Watanabe
,
T.
, 2002, “
Effects of NH3 and on the Performance of MCFCs
,”
J. Power Sources
0378-7753,
104
, pp.
265
271
.
18.
Hoffmann
,
J.
, 2005, “
Applications of Molten Carbonate Fuel Cells With Biofuels
,”
Biofuels for Fuel Cells
,
P.
Lens
,
P.
Westermann
,
M.
Haberbauer
, and
A.
Moreno
, eds.,
IWA
, pp.
478
494
.
19.
Bamberger
,
G.
,
Schweiger
,
A.
, and
Hohenwarter
,
U.
, 2007, “
Desulfurization of Hot Biomass Product Gas With Regenerative Adsorbents for SOFC
,”
15th European Biomass Conference and Exhibition
, Graz University of Technology, Berlin, May 7–11.
20.
Trogish
,
S.
,
Hoffmann
,
J.
, and
Daza Bertrand
,
L.
, 2005, “
Operation of Molten Carbonate Fuel Cells With Different Biogas Sources: A Challenging Approach for Field Trials
,”
J. Power Sources
,
145
, pp.
632
638
. 0378-7753
21.
Morita
,
H.
,
Yoshiba
,
F.
,
Woudstra
,
N.
,
Hemmes
,
K.
, and
Spliethoff
,
H.
, 2004, “
Feasibility Study of Wood Biomass Gasification/Molten Carbonate Fuel Cell Power System—Comparative Characterization of Fuel Cell and Gas Turbine Systems
,”
J. Power Sources
0378-7753,
138
, pp.
31
40
.
22.
Farooque (FCE), 2007, communication at the International Workshop on Fuel Cell Degradation Issues, Crete, Sept. 19–21.
23.
Bergaglio
,
E.
, and
Passalacqua
,
B.
, 2007, AFCo, Communication at the International Workshop on Fuel Cell Degradation Issues, Crete, September 19–21.
24.
Sugiura
,
K.
,
Takei
,
K.
,
Tanimoto
,
K.
, and
Miyazaki
,
Y.
, 2003, “
The Carbon Dioxide Concentrator by Using MCFC
,”
J. Power Sources
0378-7753,
118
, pp.
218
227
.
25.
2007, Ota (Yokohama National University), Communication at the International Workshop on Fuel Cell Degradation Issues, Crete, Sept. 19–21.
26.
Amorelli
,
A.
,
Wilkinson
,
M. B.
,
Bedont
,
P.
,
Capobianco
,
P.
,
Marcenaro
,
B.
,
Parodi
,
F.
, and
Torazza
,
A.
, 2004, “
An Experimental Investigation Into the Use of Molten Carbonate Fuel Cells to Capture CO2 From Gas Turbine Exhaust Gases
,”
Energy
,
29
, pp.
1279
1284
. 0360-5442
27.
Lusardi
,
M.
,
Bosio
,
B.
, and
Arato
,
E.
, 2004, “
An Example of Innovative Application in Fuel Cell System Development: CO2 Segregation Using Molten Carbonate Fuel Cells
,”
J. Power Sources
,
131
, pp.
351
360
. 0378-7753
28.
Moreno
,
A.
,
McPhail
,
S.
, and
Bove
,
R.
, eds., 2007,
International Status of Molten Carbonate Fuel Cell (MCFC) Technology
, pp.
196
208
.
You do not currently have access to this content.