The aim of this paper is to introduce a novel modeling method for the Proton exchange membrane full cell (PEMFC) based on the novel concept of “virtual prototyping” and to present a simple and accurate model of the cell performance by using the mixed-technology modeling language VHDL-AMS. This model describes the steady state and the dynamic behavior of a PEM fuel cell using its characteristic equations. The phenomenon of a charge double layer and the electrochemical parameters such as resistivity of membrane, concentration of hydrogen (oxygen) in catalytic interface of anode (cathode), and current density are considered in this modeling method. These parameters are adjustable and present a good solution to predict output voltage, efficiency, and output power of the PEMFC.

1.
EG & G Technical Services, Inc.
, 2002,
Fuel Cell Handbook
, 6th ed.,
Science Applications International Corporation
,
National Energy Technology Laboratory
,
Morgantown, WV
, Chap. 1, p.
1
.
2.
Rubio
,
M.
,
Urquia
,
A.
,
Gonzalez
,
L.
,
Guinea
,
D.
, and
Dormido
,
S.
, 2005, “
FuelCellLib—A Modelica Library for Modeling of Fuel Cells
,”
Proceedings of the 4th International Modelica Conference
, Vol.
1
,
G.
Schmitz
, ed.,
Modelica Association
,
Germany
, pp.
75
83
.
3.
Nehrir
,
M. H.
,
Wang
,
C.
, and
Shaw
,
S. R.
, 2006, “
Fuel Cells: Promising Devices for Distributed Generation, Understanding Their Modeling and Need for Control
,”
IEEE Power Energy Magazine
,
4
(
1
), pp
47
53
.
4.
Muller
,
E. A.
, and
Stefanopoulou
,
A. G.
, 2005, “
Analysis, Modeling, and Validation for the Thermal Dynamics of a Polymer Electrolyte Membrane Fuel Cell System
,”
Proceedings of Fuel Cell 2005, ASME Third International Conference on Fuel Cell Science, Engineering and Technology
, Ypsilanti, MI,
ASME
,
New York
.
5.
Corrêa
,
J. M.
,
Farret
,
F. A.
,
Canha
,
L. N.
, and
Simões
,
M. G.
, 2004, “
An Electrochemical-Based Fuel Cell Model Suitable for Electrical Engineering Automation Approach
,”
IEEE Trans. Ind. Electron.
0278-0046,
51
(
5
), pp.
1103
1112
.
6.
Laurencelle
,
F.
,
Chahine
,
R.
,
Hamelin
,
J.
,
Agbossou
,
K.
,
Fournier
,
M.
,
Bose
,
T. K.
, and
Laperrire
,
A.
, 2001, “
Characterization of a Ballard MK5-E Proton Exchange Membrane Fuel Cell Stack
,”
Fuel Cells
1615-6846,
1
(
1
), pp.
66
71
.
7.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
, 2nd ed.,
Wiley
,
New York
, Chap. 1, pp.
14
15
.
8.
Forrai
,
A.
,
Funato
,
H.
,
Yanagita
,
Y.
, and
Kato
,
Y.
, 2005, “
Fuel-Cell Parameter Estimation and Diagnostics
,”
IEEE Trans. Energy Convers.
0885-8969,
20
(
3
), pp.
668
675
.
9.
Wingelaar
,
P. J. H.
,
Duarte
,
J. L.
, and
Hendrix
,
M. A. M.
, 2005, “
Dynamic Characteristics of PEM Fuel Cells
,”
IEEE 36th Power Electronics Specialists Conference
, Recife, Brazil,
IEEE
,
New York
, pp.
1635
1641
.
10.
Dufour
,
C.
,
Das
,
T. K.
, and
Akella
,
S.
, 2003, “
Real Time Simulation of Proton Exchange Membrane Fuel Cell Hybrid Vehicle
,”
Proceedings of the 2003 Global Powertrain Congress (GPC-03)
,
Aachen, Germany
.
11.
Boccaletti
,
C.
,
Duni
,
G.
,
Fabbri
,
G.
, and
Santini
,
E.
, 2006, “
Simulation Models of Fuel Cell Systems
,”
Proceedings of ICEM 2006—17th International Conference on Electrical Machines
,
Chania
,
Greece
.
12.
Wang
,
C.
,
Nehrir
,
M. H.
, and
Shaw
,
S. R.
, 2005, “
Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits
,”
IEEE Trans. Energy Convers.
0885-8969,
20
(
2
), pp.
442
451
.
13.
Rencher
,
M.
, and
Ridgetop Group, Inc.
, 2004, “
VHDL-AMS Extensions Enable RF Harmonic Balance Simulation
,”
High Frequency Electronics
,
Summit Technical Media, LLC
, pp.
44
47
.
14.
Cooper
,
S.
,
Donnelly
,
M.
, and
Teegarden
,
D.
, 2006,
How to Model Mechatronic Systems Using VHDL-AMS
(
SystemVision Technology Series
),
Mentor Graphics
,
Graphics Canada
, Chap. 2, p.
12
.
You do not currently have access to this content.