Water management in a fuel cell is essential to ensure cell performance and life. In this study, a special single cell was designed for the purpose of detecting liquid water and water vapor simultaneously. The major difference between our design and traditional flow field designs is the fact that the anode and cathode channels were shifted sideways, so that they do not overlap in the majority of the active areas. The liquid water is measured by using neutron radiography located at the National Institute of Standards and Technology. The water vapor is measured by the 20 relative humidity sensors embedded in the anode and cathode flow field plates. The effects of the relative humidity and stoichiometry of the cathode inlet on relative humidity distribution in the channels and on water accumulation in the gas diffusion layers (GDLs) were investigated in this study. The liquid water accumulation at steady-state was calculated by using imaging mask techniques and least-squares method. The transient behavior of water transport was detected and recorded when a step load change was applied on the cell. It is demonstrated that liquid water tends to accumulate in the gas diffusion layers under the rib. Moreover, the transient behavior of liquid water transport in the GDL and the relative humidity distribution in both the anode and cathode channels at different operating conditions are discussed.

1.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
(
8
), pp.
1151
1163
.
2.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
(
9
), pp.
2477
2491
.
3.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
5
), pp.
2334
2342
.
4.
Wang
,
C. Y.
,
Gu
,
W. B.
, and
Liaw
,
B. Y.
, 1998, “
Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
(
10
), pp.
3407
3417
.
5.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
12
), pp.
4485
4493
.
6.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
5
), pp.
1218
1225
.
7.
Baschuk
,
J. J.
, and
Li
,
X.
, 2000, “
Modeling of Polymer Electrolyte Membrane Fuel Cells With Variable Degrees of Water Flooding
,”
J. Power Sources
0378-7753,
86
(
1–2
), pp.
181
196
.
8.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Wang
,
K. S.
, 2001, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
(
1
), pp.
40
50
.
9.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, 2004, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A399
A406
.
10.
Natarajan
,
D.
, and
Nguyen
,
T. V.
, 2001, “
A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
148
(
12
), pp.
A1324
A1335
.
11.
Lin
,
G.
, and
Nguyen
,
T. V.
, 2006, “
A Two-Dimensional Two-Phase Model of a PEM Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
153
(
2
), pp.
A372
A382
.
12.
Nishikawa
,
H.
,
Kurihara
,
R.
,
Sukemori
,
S.
,
Sugawara
,
T.
,
Kobayasi
,
H.
,
Abe
,
S.
,
Aoki
,
T.
,
Ogami
,
Y.
, and
Matsunaga
,
A.
, 2006, “
Measurements of Humidity and Current Distribution in a PEFC
,”
J. Power Sources
,
155
(
2
), pp.
213
218
. 0378-7753
13.
Mench
,
M. M.
,
Dong
,
Q. L.
, and
Wang
,
C. Y.
, 2003, “
In Situ Water Distribution Measurements in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
124
(
1
), pp.
90
98
.
14.
Tüber
,
K.
,
Pócza
,
D.
, and
Hebling
,
C.
, 2003, “
Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell
,”
J. Power Sources
0378-7753,
124
(
2
), pp.
403
414
.
15.
Pekula
,
N.
,
Heller
,
K.
,
Chuang
,
P. A.
,
Turhan
,
A.
,
Mench
,
M. M.
,
Brenizer
,
J. S.
, and
Ünlü
,
K.
, 2005, “
Study of Water Distribution and Transport in a Polymer Electrolyte Fuel Cell Using Neutron Imaging
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
542
(
1–3
), pp.
134
141
.
16.
Chuang
,
P. A.
,
Turhan
,
A.
,
Heller
,
A. K.
,
Brenizer
,
J. S.
,
Trabold
,
T. A.
, and
Mench
,
M. M.
, 2005, “
The Nature of Flooding and Drying in Polymer Electrolyte Fuel Cells
,”
Proceedings of the Third ASME International Conference on Fuel Cell Science, Engineering and Technology
.
17.
Turhan
,
A.
,
Heller
,
K.
,
Brenizer
,
J. S.
, and
Mench
,
M. M.
, 2006, “
Quantification of Liquid Water Accumulation and Distribution in a Polymer Electrolyte Fuel Cell Using Neutron Imaging
,”
J. Power Sources
0378-7753,
160
(
2
), pp.
1195
1203
.
18.
Geiger
,
A. B.
,
Tsukada
,
A.
,
Lehmann
,
E.
,
Vontobel
,
P.
,
Wokaun
,
A.
, and
Scherer
,
G. G.
, 2002, “
In Situ Investigation of Two-Phase Flow Patterns in Flow Fields of PEFC’s Using Neutron Radiography
,”
Fuel Cells
,
2
(
2
), pp.
92
98
. 1615-6846
19.
Kramer
,
D.
,
Zhang
,
J.
,
Shimoi
,
R.
,
Lehmann
,
E.
,
Wokaun
,
A.
,
Shinohara
,
K.
, and
Scherer
,
G. G.
, 2005, “
In Situ Diagnostic of Two-Phase Flow Phenomena in Polymer Electrolyte Fuel Cells by Neutron Imaging: Part A. Experimental, Data Treatment, and Quantification
,”
Electrochim. Acta
0013-4686,
50
(
13
), pp.
2603
2614
.
20.
Zhang
,
J.
,
Kramer
,
D.
,
Shimoi
,
R.
,
Ono
,
Y.
,
Lehmann
,
E.
,
Wokaun
,
A.
,
Shinohara
,
K.
, and
Scherer
,
G. G.
, 2006, “
In Situ Diagnostic of Two-Phase Flow Phenomena in Polymer Electrolyte Fuel Cells by Neutron Imaging, Part B: Material Variations
,”
Electrochim. Acta
0013-4686,
51
(
13
), pp.
2715
2727
.
21.
Trabold
,
T. A.
,
Owejan
,
J. P.
,
Jacobson
,
D. L.
,
Arif
,
M.
, and
Huffman
,
P. R.
, 2006, “
In Situ Investigation of Water Transport in an Operating PEM Fuel Cell Using Neutron Radiography, Part I: Experimental Method and Serpentine Flow Field Results
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
25–26
), pp.
4712
4720
.
22.
Owejan
,
J. P.
,
Trabold
,
T. A.
,
Jacobson
,
D. L.
,
Baker
,
D. R.
,
Hussey
,
D. S.
, and
Arif
,
M.
, 2006, “
In Situ Investigation of Water Transport in an Operating PEM Fuel Cell Using Neutron Radiography, Part II: Transient Water Accumulation in an Interdigitated Cathode Flow Field
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
25–26
), pp.
4721
4731
.
23.
Hickner
,
M. A.
,
Siegel
,
N. P.
,
Chen
,
K. S.
,
McBrayer
,
D. N.
,
Hussey
,
D. S.
,
Jacobson
,
D. L.
, and
Arif
,
M.
, 2006, “
Real-Time Imaging of Liquid Water in an Operating Proton Exchange Membrane Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
153
(
5
), pp.
A902
A908
.
24.
Djilali
,
N.
, 2007, “
Computational Modelling of Polymer Electrolyte Membrane (PEM) Fuel Cells: Challenges and Opportunities
,”
Energy
0360-5442,
32
(
4
), pp.
269
280
.
25.
Hussey
,
D. S.
,
Jacobson
,
D. L.
,
Arif
,
M.
,
Huffman
,
P. R.
,
Williams
,
R. E.
, and
Cook
,
J. C.
, 2005, “
New Neutron Imaging Facility at the NIST
,”
Nucl. Instrum. Methods Phys. Res. A
,
542
(
1–3
), pp.
9
15
. 0168-9002
26.
Bay
,
J. S.
, 1998,
Fundamentals of Linear State Space Systems
,
McGraw-Hill
,
New York
, Chap. 3.
You do not currently have access to this content.