The vaporization of Cr-rich volatile species from interconnector materials for high temperature solid oxide fuel cells (SOFCs) is considered to be a major source of degradation that limits the lifetime of planar SOFC systems (Fujita et al., 2004, “Prevention of SOFC Cathode Degradation in Contact With Cr-Containing Alloy,” J. Power Sources, 131(1–2), pp. 261–269; Hilpert, 1996, “Chromium Vapor Species Over Solid Oxide Fuel Cell Interconnect Materials and Their Potential for Degradation Processes,” J. Electrochem. Soc., 143(11), pp. 3642–3647; Kurukowa et al., 2007, “Chromium Vaporization of Bare and of Coated Iron-Chromium Coatings,” Solid State Ionics, 178, pp. 287–296; Quadakkers, Greiner, and Köck, 1994, “Metals and Alloys for High Temperature SOFC Application,” SOFC Forum, Lucern, Switzerland; Quadakkers et al., 1996, “The Chromium Base Metallic Bipolar Plate-Fabrication, Corrosion and Cr Evaporation,” European Oxide Fuel Cell Forum, Oslo, Norway; Yang, 2006, “Evaluation of Ni-Cr-Base Alloys for SOFC Interconnect Applications,” J. Power Sources, 160(2), pp. 1104–1110). For a longer lifetime of these systems, the Cr vaporization of the interconnector material shall be reduced (Collins, Lucas, and Buchanan, 2006, “Chromium Volatility of Coated and Uncoated Steel Interconnects for SOFCs,” Surf. Coat. Technol., 201(7), pp. 4467). The potential of reduction in the Cr vaporization using coatings with spinel layers is the subject of the present work. In this study the influence of processing parameters for Crofer22APU coated with a spinel based on (Mn,Co,Fe)3O4 on the Cr vaporization rates was studied at 800°C in air using the transpiration method. The measured Cr release of the coated samples was compared with an uncoated Crofer22APU. The aim of this work was to find the optimum conditions to prepare the spinel coating regarding to Cr vaporization. By using such a coating, the Cr vaporization rate was found to be two orders of magnitude lower than uncoated steel. The sintering temperature and pretreatment of the sample showed a high influence on the Cr release.

1.
Fujita
,
K.
,
Ogasawara
,
K.
,
Matsuzaki
,
Y.
, and
Sakurai
,
T.
, 2004, “
Prevention of SOFC Cathode Degradation in Contact With Cr-Containing Alloy
,”
J. Power Sources
0378-7753,
131
(
1–2
), pp.
261
269
.
2.
Hilpert
,
K.
, 1996, “
Chromium Vapor Species Over Solid Oxide Fuel Cell Interconnect Materials and Their Potential for Degradation Processes
,”
J. Electrochem. Soc.
0013-4651,
143
(
11
), pp.
3642
3647
.
3.
Kurokawa
,
H.
,
Jacobson
,
C. P.
,
De Jonghe
,
L. C.
, and
Visco
,
S. J.
, 2007, “
Chromium Vaporization of Bare and of Coated Iron-Chromium Coatings
,”
Solid State Ionics
0167-2738,
178
, pp.
287
296
.
4.
Quadakkers
,
W. J.
,
Greiner
,
H.
, and
Köck
,
W.
, 1994, “
Metals and Alloys for High Temperature SOFC Application
,”
SOFC Forum
, Lucern, Switzerland.
5.
Quadakkers
,
W. J.
,
Greiner
,
H.
,
Köck
,
W.
,
Buchkremer
,
H. P.
,
Hilpert
,
K.
, and
Stöver
,
D.
, 1996, “
The Chromium Base Metallic Bipolar Plate-Fabrication, Corrosion and Cr Evaporation
,”
European Oxide Fuel Cell Forum
, Oslo, Norway.
6.
Yang
,
Z.
, 2006, “
Evaluation of Ni–Cr-Base Alloys for SOFC Interconnect Applications
,”
J. Power Sources
0378-7753,
160
(
2
), pp.
1104
1110
.
7.
Collins
,
C.
,
Lucas
,
J.
, and
Buchanan
,
T. L.
,
, 2006, “
Chromium Volatility of Coated and Uncoated Steel Interconnects for SOFCs
,”
Surf. Coat. Technol.
0257-8972,
201
(
7
), pp.
4467
4470
.
8.
Gindorf
,
C.
,
Hilpert
,
K.
,
Nabielek
,
H.
,
Singheiser
,
L.
,
Ruckdäschel
,
R.
, and
Schiller
,
G.
, 2000, “
Chromium Release From Metallic Interconnects With and Without Coatings
,”
Fourth European SOFC Forum
, pp.
845
854
.
9.
Gindorf
,
C.
,
Hilpert
,
K.
, and
Singheiser
,
L.
, 2001, “
Determination of Chromium Vaporization Rates of Different Interconnect Alloys by Transpiration Experiments
,”
SOFC VII
, pp.
793
802
.
10.
Gindorf
,
C.
,
Singheiser
,
L.
, and
Hilpert
,
K.
, 1999, “
Chromium Vaporization From Metallic Interconnect and Retention by Perovskite Layers
,”
SOFC VI
.
11.
Gindorf
,
C.
,
Singheiser
,
L.
, and
Hilpert
,
K.
, 2000, “
Vaporization Studies of Pure Chromia and Chromium Containing Alloys in Humid Air
,”
Proceedings of the Tenth International IUPAC Conference
, Jülich, Germany.
12.
Gindorf
,
C.
,
Singheiser
,
L.
, and
Hilpert
,
K.
, 2001, “
Chromium Vaporization From Fe,Cr Alloys Used as Interconnect in Fuel Cells
,”
Steel Res.
0177-4832,
72
(
11–12
), pp.
528
533
.
13.
Gindorf
,
C.
,
Singheiser
,
L.
, and
Hilpert
,
K.
, 2003, “
Vaporisation of Chromia in Humid Air
,”
IUPAC Conferences on High Temperature Materials Chemistry (HTMC-XI)
, Tokyo, Japan.
14.
Asteman
,
H.
, 2002, “
Oxidation of 310 Steel in H2O/O2 Mixtures at 600°C: The Effect of Water-Vapour-Enhanced Chromium Evaporation
,”
Corros. Sci.
0010-938X,
44
(
11
), pp.
2635
2649
.
15.
Asteman
,
H.
, 2002, “
Evidence for Chromium Evaporation Influencing the Oxidation of 304l: The Effect of Temperature and Flow Rate
,”
Oxid. Met.
0030-770X,
57
(
3–4
), pp.
193
216
.
16.
Asteman
,
H.
, 2004, “
Effect of Water-Vapor-Induced Cr Vaporization on the Oxidation of Austenitic Stainless Steels at 700 and 900°C: Influence of Cr/Fe Ratio in Alloy and Ce Additions
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
B141
B150
.
17.
Meulenberg
,
A. W.
,
Mertens
,
J.
,
Bram
,
M.
,
Buchkremer
,
H. P.
, and
Stöver
,
D.
, 2006, “
Graded Porous TiO2 Membranes for Microfiltration
,”
J. Eur. Ceram. Soc.
0955-2219,
26
(
4–5
), pp.
449
454
.
18.
Stanislowski
,
M.
,
Seeling
,
U.
,
Peck
,
D. H.
,
Woo
,
S. K.
,
Singheiser
,
L.
, and
Hilpert
,
K.
, 2005, “
Vaporization Study of Doped Lanthanum Gallates and Ga2O3(s) in H2/H2O Atmospheres by the Transpiration Method
,”
Solid State Ionics
0167-2738,
176
(
35–36
), pp.
2523
2533
.
19.
Langmuir
,
I.
, 1913, “
The Vapor Pressure of Metallic Tungsten
,”
Phys. Rev.
0096-8250,
2
(
5
), pp.
329
342
.
20.
Searcy
,
A. W.
, 1968,
Chemical and Mechanical Behavior of Inorganic Materials
,
A. W.
Searcy
,
D. V.
Ragone
, and
U.
Colombo
, eds.,
Wiley-Interscience
,
New York
.
21.
Hofmeister
,
H. K.
, 1960, “
Zum Einfluss Der Strömungsgeschwindigkeit Auf Die Ermittlung Von Gleichgewichtsdampfdrucken Mit Der Mitführungsmethode
,”
Z. Elektrochem.
,
64
(
4
), pp.
513
517
.
You do not currently have access to this content.