As an alternative to traditional reactant flow field design, interdigitated flow field configuration is also of interest to fuel cell design engineers and academic researchers. In this work, the two-phase flow behavior inside the cathode of an interdigitated proton exchange membrane fuel cell, including both gas flow channel and porous gas diffusion layer, is numerically studied. The effects of variable design and operational parameters, including channel surface wettability and operating pressure, on water behavior are investigated. A Darcy’s law based porous media model is used for the simulation of the two-phase transport inside the cathode gas diffusion layer, and some interesting two-phase behaviors, such as liquid water distribution under different operating condition, are observed. Compared with the water transport characteristics of a serpentine flow field, the current study shows significant difference for an interdigitated configuration, in terms of two-phase water transport. Although the interdigitated design is generally not considered viable for practical applications in fuel cell, it does provide a convenient platform for fundamental studies of multiphase transport and valuable insights in fuel cell design and optimization.

1.
Gottesfeld
,
S.
, and
Zawodzinski
,
T. A.
, 1997, “
Polymer Electrolyte Fuel Cells
,”
Advances in Electrochemical Science and Engineering
, Vol.
5
,
R. C.
Alkire
,
H.
Gerischer
,
D. M.
Kolb
, and
C. W.
Tobias
, eds.,
Wiley-VCH
,
Verlag
, pp.
195
301
.
2.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2342
.
3.
Cao
,
J.
, and
Djilali
,
N.
, 2005, “
Numerical Modeling of PEM Fuel Cells Under Partially Hydrated Membrane Conditions
,”
ASME J. Energy Resour. Technol.
0195-0738,
127
(
1
), pp.
26
36
.
4.
Litster
,
S.
,
Sinton
,
D.
, and
Djilali
,
N.
, 2006, “
Ex Situ Visualization of Liquid Water Transport in PEM Fuel Cell Gas Diffusion Layers
,”
J. Power Sources
0378-7753,
154
, pp.
95
105
.
5.
Bellows
,
R. J.
,
Lin
,
M. Y.
,
Arif
,
M.
,
Thompson
,
A. K.
, and
Jacobson
,
D.
, 1999, “
Neutron Imaging Technique for In Situ Measurement of Water Transport Gradients Within Nafion in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
146
(
3
), pp.
1099
1103
.
6.
Satija
,
R.
,
Jacobson
,
D. L.
,
Arif
,
M.
, and
Werner
,
S. A.
, 2004, “
In Situ Neutron Imaging Technique for Evaluation of Water Management Systems in Operating PEM Fuel Cells
,”
J. Power Sources
0378-7753,
129
, pp.
238
245
.
7.
Owejan
,
J. P.
,
Trabold
,
T. A.
,
Jacobson
,
D. L.
,
Baker
,
D. R.
,
Hussey
,
D. S.
, and
Arif
,
M.
, 2006, “
In-Situ Investigation of Water Transport in an Operating PEM Fuel Cell Using Neutron Radiography. Part 2–Transient Water Accumulation in an Interdigitated Cathode Flow Field
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4721
4731
.
8.
Li
,
S.
, and
Becker
,
U.
, 2005, “
A Three Dimensional CFD Model for PEMFC
,”
Proceedings of FUELCELL2004
, Jun. 14–16, pp.
157
164
.
9.
Schulz
,
V. P.
,
Becker
,
J.
,
Wiegmann
,
A.
,
Mukherjee
,
P. P.
, and
Wang
,
C. -Y.
, 2007, “
Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs Via Full Morphology Approach
,”
J. Electrochem. Soc.
0013-4651,
154
(
4
), pp.
B419
B426
.
10.
Park
,
J.
, and
Li
,
X.
, 2008, “
Multi-Phase Micro-Scale Flow Simulation in the Electrodes of a PEM Fuel Cell by Lattice Boltzmann Method
,”
J. Power Sources
0378-7753,
178
, pp.
248
257
.
11.
Niu
,
X.
,
Munekata
,
T.
,
Hyodoa
,
S.
, and
Suga
,
K.
, 2007, “
An Investigation of Water-Gas Transport Processes in the Gas-Diffusion-Layer of a PEM Fuel Cell by a Multiphase Multiple-Relaxation-Time Lattice Boltzmann Model
,”
J. Power Sources
0378-7753,
172
, pp.
542
552
.
12.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
(
8
), pp.
1151
1163
.
13.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model of the Solid Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2491
.
14.
Zhang
,
F. Y.
,
Yang
,
X. G.
, and
Wang
,
C. -Y.
, 2006, “
Liquid Water Removal From a Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
153
(
2
), pp.
A225
A232
.
15.
FLUENT
, FLUENT 6.3 User’s Guide.
16.
Quan
,
P.
,
Zhou
,
B.
,
Andrzej
,
S.
, and
Liu
,
Z.
, 2005, “
Water Behavior in Serpentine Micro-Channel for Proton Exchange Membrane Fuel Cell Cathode
,”
J. Power Sources
0378-7753,
152
, pp.
131
145
.
17.
Jiao
,
K.
,
Zhou
,
B.
, and
Quan
,
P.
, 2006, “
Liquid Water Transport in Parallel Serpentine Channels With Manifolds on Cathode Side of a PEM Fuel Cell Stack
,”
J. Power Sources
0378-7753,
154
, pp.
124
137
.
18.
Zhan
,
Z.
,
Xiao
,
J.
,
Pan
,
M.
, and
Yuan
,
R.
, 2006, “
Characteristics of Droplet and Film Water Motion in the Flow Channels of Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
160
, pp.
1
9
.
19.
Quan
,
P.
, and
Lai
,
M. -C.
, 2007, “
Numerical Study of Water Management in the Air Flow Channel of a PEM Fuel Cell Cathode
,”
J. Power Sources
0378-7753,
164
, pp.
222
237
.
20.
Nguyen
,
T. V.
, 1996, “
A Gas Distributor Design for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
L103
105
.
21.
de Souza
,
A.
, and
Gonzalez
,
E. R.
, 2003, “
Influence of the Operational Parameters on the Performance of Polymer Electrolyte Membrane Fuel Cells With Different Flow Fields
,”
J. Solid State Electrochem.
1432-8488,
7
(
9
), pp.
651
657
.
22.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1999, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
0013-4651,
146
(
1
), pp.
38
45
.
23.
Gostick
,
J. T.
,
Fowler
,
M. W.
,
Ioannidis
,
M. A.
,
Pritzker
,
M. D.
,
Volfkovich
,
Y. M.
, and
Sakars
,
A.
, 2006, “
Capillary Pressure and Hydrophilic Porosity in Gas Diffusion Layers for Polymer Electrolyte Fuel Cells
,”
J. Power Sources
0378-7753,
156
, pp.
375
387
.
24.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
25.
Pasaogullari
,
U.
, and
Wang
,
C. -Y.
, 2004, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
151
(
3
), pp.
A399
A406
.
You do not currently have access to this content.