A comprehensive computational model for the design of methane catalytic partial oxidation monolith reactors for hydrogen production has been developed and tested with respect to available experimental data. Allowing a simplified description of the heat release mechanism associated with the reforming process, the model represents a useful tool to address performances and durability issues in the design process of full scale catalytic reformers. The characteristic temperature peak along the catalyst channels, which is experimentally observed as a result of the competitive action of fuel complete oxidation and steam reforming is, in fact, a fundamental parameter to be controlled during the design process and is a complex function of catalyst formulation, mixture composition, and actual operating conditions. To address this issue in the present paper the heat release law mechanism has been studied with a new approach named heat release curves model (HRCM), which decouples the thermofluid dynamic analysis of real geometries from the modeling of heterogeneous chemistry. The model uses heat release curves extrapolated from detailed heterogeneous chemistry calculation or experimental measurements as the basis of a simplified, although still predictive, evaluation of the heat released, which allows a substantial reduction in computational costs. Validation of HRCM model (including heat release profiles approximation) with respect to more detailed simulations and available experimental data shows very good predictive capabilities with a maximum error lower than the 4% over a wide number of analyzed cases (accounting for several O/C ratios, inlet velocities, channel dimensions, and mean temperatures). Although presented for natural gas reforming the present model may be easily extended to different fuels.

1.
Lange
,
J. P.
,
Schoonebeek
,
R. J.
,
Mercera
,
P. D. L.
, and
van Breukelen
,
F. W.
, 2005, “
Oxycracking of Hydrocarbons: Chemistry, Technology and Economic Potential
,”
Appl. Catal., A
0926-860X,
283
, pp.
243
253
.
2.
Tsang
,
S. C.
,
Claridge
,
J. B.
, and
Green
,
M. L. H.
, 1995, “
Recent Advances in the Conversion of Methane to Synthesis Gas
,”
Catal. Today
0920-5861,
23
, pp.
3
15
.
3.
York
,
A. P. E.
,
Xiao
,
T.
, and
Green
,
M. L. H.
, 2003, “
Brief Overview of the Partial Oxidation of Methane to Synthesis Gas
,”
Top. Catal.
1022-5528,
22
, pp.
345
358
.
4.
Zhu
,
Q.
,
Zhao
,
X.
, and
Deng
,
Y.
, 2004, “
Advances in the Partial Oxidation of Methane to Synthesis Gas
,”
J. Nat. Gas Chem.
,
13
, pp.
191
203
. 1003-9953
5.
Incropera
,
F. P.
, and
De Witt
,
D. P.
, 2001,
Fundamentals of Heat and Mass Transfer
,
Wiley-Interscience
,
New York
.
6.
Horn
,
R.
,
Degenstein
,
N. J.
,
Williams
,
K. A.
, and
Schmidt
,
L. D.
, 2006, “
Spatial and Temporal Profiles in Millisecond Partial Oxidation Processes
,”
Catal. Lett.
1011-372X,
110
(
3–4
), pp.
169
279
.
7.
Appel
,
C.
,
Mantzaras
,
J.
,
Schaeren
,
R.
,
Bombach
,
R.
,
Inauen
,
A.
,
Tylli
,
N.
,
Wolf
,
M.
,
Griffin
,
T.
,
Winkler
,
D.
, and
Carroni
,
R.
, 2005, “
Partial Catalytic Oxidation of Methane to Synthesis Gas Over Rhodium: In Situ Raman Experiments and Detailed Simulations
,”
Proceedings of the Combustion Institute
, Paper No. 30 2509-2517.
8.
Ostrowski
,
T.
,
Girior-Fendler
,
A.
,
Mirodatos
,
C.
, and
Mleczko
,
L.
, 1998, “
Comparative Study of the Catalytic Partial Oxidation of Methane to Synthesis Gas in Fixed-Bed and Fluidized-Bed Membrane Reactors: Part I: A Modeling Approach
,”
Catal. Today
0920-5861,
40
, pp.
181
190
.
9.
de Smet
,
C. R. H.
,
de Croon
,
M. H. J. M.
,
Berger
,
R. J.
,
Marin
,
G. B.
, and
Schouten
,
J. C.
, 1999, “
An Experimental Reactor to Study the Intrinsic Kinetics of Catalytic Partial Oxidation of Methane in the Presence of Heat-Transport Limitations
,”
Appl. Catal., A
0926-860X,
187
, pp.
33
48
.
10.
Smit
,
J.
,
Bekink
,
G. J.
,
van Sint Annaland
,
M.
, and
Kuipers
,
J. A. M.
, 2007, “
Experimental Demonstration of the Reverse Flow Catalytic Membrane Reactor Concept for Energy Efficient Syngas Production. Part I: Influence of Operating Conditions
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
1239
1250
.
11.
Deutschmann
,
O.
, and
Schmidt
,
L. D.
, 1998, “
Modeling the Partial Oxidation of Methane in a Short-Contact-Time Reactor
,”
AIChE J.
0001-1541,
44
, pp.
2465
2477
.
12.
Deutschmann
,
O.
,
Schwiedernoch
,
R.
,
Maier
,
L.
, and
Chatterjee
,
D.
, 2001,
Natural Gas Conversion VI
, Vol.
136
, p.
215
,
Elsevier
,
New York
.
14.
Quiceno
,
R.
,
Pérez-Ramírez
,
J.
,
Warnatz
,
J.
, and
Deutschmann
,
O.
, 2006, “
Modeling the High-Temperature Catalytic Partial Oxidation of Methane Over Platinum Gauze: Detailed Gas-Phase and Surface Chemistries Coupled With 3D Flow Field Simulations
,”
Appl. Catal., A
0926-860X,
303
, pp.
166
176
.
15.
Hecht
,
E.
,
Gupta
,
G. K.
,
Zhu
,
H.
,
Dean
,
A. M.
,
Kee
,
R. J.
,
Maier
,
L.
, and
Deutschmann
,
O.
, 2005, “
Methane Reforming Kinetics Within a Ni-YSZ SOFC Anode Support
,”
Appl. Catal., A
0926-860X,
295
, pp.
40
51
.
16.
Heck
,
R. M.
,
Gulati
,
S.
, and
Farrauto
,
R. J.
, 2001, “
The Application of Monoliths for Gas Phase Catalytic Reactions
,”
Chem. Eng. J.
0300-9467,
82
(
1–3
), pp.
149
156
.
17.
Bizzi
,
M.
,
Saracco
,
G.
,
Schwiedernoch
,
R.
, and
Deutschmann
,
O.
, 2004, “
Modeling the Partial Oxidation of Methane in a Fixed Bed With Detailed Chemistry
,”
AIChE J.
0001-1541,
50
, pp.
1289
1299
.
18.
Schwiedernoch
,
R.
,
Tischer
,
S.
,
Correa
,
C.
, and
Deutschmann
,
O.
, 2003, “
Experimental and Numerical Study on the Transient Behavior of Partial Oxidation of Methane in a Catalytic Monolith
,”
Chem. Eng. Sci.
0009-2509,
58
, pp.
633
642
.
19.
Cordiner
,
S.
, and
Mulone
,
V.
, 2007, “
3D Unsteady Modelling of the Loading Process in a Diesel Engine PM-Filter
,” SAE Technical Paper No. 2007-01-1132.
20.
Geus
,
J. W.
, and
van Giezen
,
J. C.
, 1999, “
Monoliths in Catalytic Oxidation
,”
Catal. Today
0920-5861,
47
, pp.
169
180
.
21.
Deutschmann
,
O.
, 2001, “
Interactions Between Transport and Chemistry in Catalytic Reactors
,” Habilitation thesis, Ruprecht-Karls-Universität, Heidelberg, Germany.
22.
Kee
,
R. J.
,
Coltrin
,
M. E.
, and
Glarborg
,
P.
, 2003,
Chemically Reacting Flow Theory & Practice
,
Wiley-Interscience
,
New York
.
23.
Sarioglan
,
A.
,
Olgun
,
H.
,
Baranak
,
M.
,
Ersoz
,
A.
,
Atakul
,
H.
, and
Ozdoganv
,
S.
, 2007, “
Diesel Evaporation as the First Step of Hydrogen Production
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
2895
2901
.
You do not currently have access to this content.