In this paper we perform a model-based analysis of a solid oxide fuel cell (SOFC) system with an integrated steam reformer and with methane as a fuel. The objective of this study is to analyze the steady-state and transient characteristics of this system. For the analysis, we develop a detailed control-oriented model of the system that captures the heat and mass transfer, chemical kinetics, and electrochemical phenomena. We express the dynamics of the reformer and the fuel cell in state-space form. By applying coordinate transformations to the state-space model, we derive analytical expressions of steady-state conditions and transient behaviors of two critical performance variables, namely, fuel utilization and steam-to-carbon balance. Using these results, we solve a constrained steady-state fuel optimization problem using linear programming. Our analysis is supported by simulations. The results presented in this paper can be applied in predicting steady-state conditions and certain transient behaviors and will be useful in control development for SOFC systems.

1.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
, 2005, “
Anode Supported Intermediate-Temperature Direct Internal Reforming Solid Oxide Fuel Cell, II. Model-Based Dynamic Performance and Control
,”
J. Power Sources
0378-7753,
147
, pp.
136
147
.
2.
Campanari
,
S.
, and
Iora
,
P.
, 2005, “
Comparison of Finite Volume SOFC Models for the Simulation of a Planar Cell Geometry
,”
Fuel Cells
0532-7822,
5
, pp.
34
51
.
3.
Lu
,
N.
,
Li
,
Q.
,
Sun
,
X.
, and
Khaleel
,
M. A.
, 2006, “
The Modeling of a Standalone Solid-Oxide Fuel Cell Auxiliary Power Unit
,”
J. Power Sources
0378-7753,
161
, pp.
938
948
.
4.
Xi
,
H.
,
Sun
,
J.
, and
Tsourapas
,
V.
, 2007, “
A Control Oriented Low Order Dynamic Model for Planar SOFC Using Minimum Gibbs Free Energy Method
,”
J. Power Sources
0378-7753,
165
, pp.
253
266
.
5.
Hall
,
D. J.
, and
Colclaser
,
R. G.
, 1999, “
Transient Modeling and Simulation of a Tubular Solid Oxide Fuel Cell
,”
IEEE Trans. Energy Convers.
0885-8969,
14
(
3
), pp.
749
753
.
6.
Kandepu
,
R.
,
Imsland
,
L.
,
Foss
,
B. A.
,
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
, 2007, “
Modeling and Control of a SOFC-GT-Based Autonomous Power System
,”
Energy
0360-5442,
32
, pp.
406
417
.
7.
Lazzaretto
,
A.
,
Toffolo
,
A.
, and
Zanon
,
F.
, 2004, “
Parameter Setting for a Tubular SOFC Simulation Model
,”
ASME J. Energy Resour. Technol.
0195-0738,
126
, pp.
40
46
.
8.
Li
,
P.
, and
Chyu
,
M. K.
, 2003, “
Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC in a Stack
,”
J. Power Sources
0378-7753,
124
, pp.
487
498
.
9.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
, 2006, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
144
154
.
10.
Xue
,
X.
,
Tang
,
J.
,
Sammes
,
N.
, and
Du
,
Y.
, 2005, “
Dynamic Modeling of Single Tubular SOFC Combining Heat/Mass Transfer and Electrochemical Reaction Effects
,”
J. Power Sources
0378-7753,
142
, pp.
211
222
.
11.
Achenbach
,
E.
, and
Riensche
,
E.
, 1994, “
Methane/Steam Reforming Kinetics for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
52
, pp.
283
288
.
12.
Xu
,
J.
, and
Froment
,
G. F.
, 1989, “
Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics
,”
AIChE J.
0001-1541,
35
(
1
), pp.
88
96
.
13.
Achenbach
,
E.
, 1995, “
Response of a Solid Oxide Fuel Cell to Load Change
,”
J. Power Sources
0378-7753,
57
, pp.
105
109
.
14.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2005, “
Influence of Anodic Recirculation Transient Behavior on the SOFC Hybrid System Performance
,”
J. Power Sources
0378-7753,
149
, pp.
22
32
.
15.
Sedghisigarchi
,
K.
, and
Feliachi
,
A.
, 2004, “
Dynamic and Transient Analysis of Power Distribution Systems With Fuel Cells-Part 1: Fuel-Cell Dynamic Model
,”
IEEE Trans. Energy Convers.
0885-8969,
19
(
2
), pp.
423
428
.
16.
Mazumder
,
S. K.
,
Pradhan
,
S. K.
,
Acharya
,
K.
,
Hartvigsen
,
J.
,
von Spakovsky
,
M. R.
, and
Haynes
,
C.
, 2004, “
Load Transient Mitigation Techniques for Solid-Oxide Fuel Cell (SOFC) Power-Conditioning System
,”
INTELEC 2004
,
26th Annual International Telecommunications Energy Conference
, pp.
174
181
.
17.
Karnik
,
A. Y.
, and
Sun
,
J.
, 2005, “
Modeling and Control of an Ejector Based Anode Recirculation System for Fuel Cells
,”
Proceedings of the ASME Fuel Cell Conference
, ASME, New York, pp.
721
731
.
18.
Wark
,
K.
, 1988,
Thermodynamics
, 5th ed.,
McGraw-Hill
,
New York
.
19.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
.
20.
Bove
,
R.
,
Lunghi
,
P.
, and
Sammes
,
N. M.
, 2005, “
SOFC Mathematic Model for Systems Simulations-Part 2: Definition of an Analytical Model
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
189
200
.
21.
Li
,
X.
, 2006,
Principles of Fuel Cells
,
Taylor & Francis
,
New York
.
22.
Roberts
,
R. A.
, and
Brouwer
,
J.
, 2006, “
Dynamic Simulation of a Pressurized 220 kW Solid Oxide Fuel Cell-Gas Turbine Hybrid System: Modeled Performance Compared to Measured Results
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
18
25
.
23.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
, 2nd ed.,
Wiley
,
New York
.
24.
Roberts
,
C. A.
,
George
,
R. A.
,
Veyo
,
S. E.
, and
Casanova
,
A. C.
, 2000, “
Demonstrations: The Bridge to Commercialization for the SOFC
,” Electricity Today Magazine, http://www.electricity-today.comhttp://www.electricity-today.com, Jun.
You do not currently have access to this content.