A two phase nonisothermal 3D unsteady model is used to study the transients at start-up of a polymer electrolyte membrane fuel cell. The model is used to simulate start-up under different starting or initial conditions. The objective is to study the transient behavior of current and the phenomena affecting it. The transient current density obtained from simulation under purged and inflow/equilibrium initial conditions are plotted. The saturation and the temperature profile evolution within the gas diffusion layer under different conditions are also studied. The effect of gas diffusion layer thickness and reaction rate on the current density evolution is analyzed. It is found that the transient current density depends on the initial condition. Mass transport is the major phenomenon influencing the current density profile, and the mass transport transients are found to be subsecond in nature. The consumption and transport time scales are seen to affect the current undershoot at high loads. The liquid water evolution and distribution behaves very differently, under different initial conditions, as well as different inflow conditions. However, the total time taken by liquid water and temperature to reach steady state for different initial conditions is very close. It is also seen that the temperature transient is less than the liquid water transient, overall.

1.
Amphlett
,
J. C.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
, 1996, “
A Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
61
, pp.
183
188
.
2.
Wöhr
,
M.
,
Bolwin
,
W.
, and
Schnurnberger
,
W.
, 1998, “
Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitations
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
3
), pp.
213
218
.
3.
Um
,
S.
, and
Wang
,
C. Y.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
12
), pp.
4485
4493
.
4.
Wang
,
Y.
, and
Wang
,
C. Y.
, 2005, “
Transient Analysis of Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
50
(
6
), pp.
1307
1315
.
5.
Shimpalee
,
S.
,
Lee
,
W. K.
,
Van Zee
,
J. W.
, and
Naseri-Neshat
,
H.
, 2006, “
Predicting the Transient Response of a Serpentine Flow-Field PEMFC: I. Excess to Normal Fuel and Air
,”
J. Power Sources
0378-7753,
156
(
2
), pp.
355
368
.
6.
Shimpalee
,
S.
,
Lee
,
W. K.
,
Van Zee
,
J. W.
, and
Naseri-Neshat
,
H.
, 2006, “
Predicting the Transient Response of a Serpentine Flow-Field PEMFC: II. Normal to Minimal Fuel and Air
,”
J. Power Sources
0378-7753,
156
(
2
), pp.
369
374
.
7.
Serincan
,
M. F.
, and
Yesilyurt
,
S.
, 2007, “
Transient Analysis of Proton Electrolyte Membrane Fuel Cells (PEMFC) at Start-Up and Failure
,”
Fuel Cells
0532-7822,
7
(
2
), pp.
118
127
.
8.
Song
,
D.
,
Wang
,
Q.
,
Liu
,
Z. -S.
, and
Huang
,
C.
, 2006, “
Transient Analysis for the Cathode Gas Diffusion Layer of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
159
(
2
), pp.
928
942
.
9.
Wu
,
H.
,
Berg
,
P.
, and
Li
,
X.
, 2007, “
Non-Isothermal Transient Modeling of Water Transport in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
165
(
1
), pp.
232
243
.
10.
Meng
,
H.
, 2007, “
Numerical Investigation of Transient Responses of a PEM Fuel Cell Using a Two-Phase Non-Isothermal Mixed-Domain Model
, ”
J. Power Sources
0378-7753,
171
(
2
), pp.
738
746
.
11.
Shah
,
A. A.
,
Kim
,
G. -S.
,
Sui
,
P. C.
, and
Harvey
,
D.
, 2007, “
Transient Non-Isothermal Model of a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
163
(
2
), pp.
793
806
.
12.
Yu
,
H.
, and
Ziegler
,
C.
, 2006, “
Transient Behavior of a Proton Exchange Membrane Fuel Cell Under Dry Operation
,”
J. Electrochem. Soc.
0013-4651,
153
(
3
), pp.
A570
A575
.
13.
Yan
,
Q.
,
Toghiani
,
H.
,
Lee
,
Y. -W.
,
Liang
,
K.
, and
Causey
,
H.
, 2006, “
Effect of Sub-Freezing Temperatures on a PEM Fuel Cell Performance, Startup and Fuel Cell Components
,”
J. Power Sources
0378-7753,
160
(
2
), pp.
1242
1250
.
14.
Oszcipok
,
M.
,
Hakenjos
,
A.
,
Riemann
,
D.
, and
Hebling
,
C.
, 2007, “
Start Up and Freezing Processes in PEM Fuel Cells
,”
Fuel Cells
0532-7822,
7
, pp.
135
141
.
15.
Tajiri
,
K.
,
Tabuchi
,
Y.
, and
Wang
,
C. Y.
, 2007, “
Isothermal Cold Start of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B147
B152
.
16.
Ge
,
S.
, and
Wang
,
C. Y.
, 2007, “
Characteristics of Subzero Startup and Water/Ice Formation on the Catalyst Layer in a Polymer Electrolyte Fuel Cell
,”
Electrochim. Acta
0013-4686,
52
, pp.
4825
4835
.
17.
Mao
,
L.
, and
Wang
,
C.
, 2007, “
A Multiphase Model for Cold Start of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
B341
B351
.
18.
Jiang
,
F.
,
Fang
,
W.
, and
Wang
,
C. Y.
, 2007, “
Non-Isothermal Cold Start of Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
53
, pp.
610
621
.
19.
Meng
,
H.
, 2008, “
Numerical Analyses of Non-Isothermal Self-Start Behaviors of PEM Fuel Cells From Subfreezing Startup Temperatures
,”
Int. J. Hydrogen Energy
0360-3199,
33
(
20
), pp.
5738
5747
.
20.
Chang
,
S. -M.
, and
Chu
,
H. -S.
, 2007, “
A Transient Model of PEM Fuel Cells Based on a Spherical Thin Film-Agglomerate Approach
,”
J. Power Sources
0378-7753,
172
(
2
), pp.
790
798
.
21.
Hu
,
G.
, and
Fan
,
J.
, 2007, “
Transient Computation Fluid Dynamics Modeling of a Single Proton Exchange Membrane Fuel Cell With Serpentine Channel
,”
J. Power Sources
0378-7753,
165
(
1
), pp.
171
184
.
22.
Ishikawa
,
Y.
,
Hamada
,
H.
,
Uehara
,
M.
, and
Shiozawa
,
M.
, 2008, “
Super-Cooled Water Behavior Inside Polymer Electrolyte Fuel Cell Cross-Section Below Freezing Temperature
,”
J. Power Sources
0378-7753,
179
, pp.
547
552
.
23.
Wu
,
J.
, and
Liu
,
Q.
, 2005, “
Simulation-Aided PEM Fuel Cell Design and Performance Evaluation
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
, pp.
20
28
.
24.
He
,
W.
,
Yi
,
J. S.
, and
Van Nguyen
,
T.
, 2000, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
0001-1541,
46
(
10
), pp.
2053
2064
.
25.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2001, “
Two Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
94
(
1
), pp.
40
50
.
26.
Liu
,
Q.
, and
Wu
,
J.
, 2006, “
Multi-Resolution PEM Fuel Cell Model Validation and Accuracy Analysis
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
51
61
.
27.
Yan
,
Q.
,
Liu
,
Q.
,
Toghiani
,
H.
, and
Wu
,
J.
, 2007, “
Experiments Toward Fundamental Validation of PEM Fuel Cell Models
,”
Proceedings of the Third International Conference on Fuel Cell Science, Engineering and Technology
, Ypsilanti, MI.
28.
Mishra
,
B.
, and
Wu
,
J.
, 2009, “
Study of the Effects of Various Parameters on the Transient Current Density at Polymer Electrolyte Membrane Fuel Cell Start-Up
,”
Renewable Energy
0960-1481,
34
, pp.
2296
2307
.
You do not currently have access to this content.