A comprehensive 3D computational fluid dynamics (CFD) model is developed for a bi-electrode supported cell (BSC) solid oxide fuel cell (SOFC). The model includes complicated transport phenomena of mass/heat transfer, charge (electron and ion) migration, and electrochemical reactions. The uniqueness of the modeling study is that functionally graded porous electrode property is taken into account, including not only linear but also nonlinear porosity distributions. The model is validated using experimental data from open literature. Numerical results indicate that BSC performance is strongly dependent on both operating conditions and porous microstructure distributions of electrodes. Using the proposed fuel/gas feeding design, the uniform hydrogen distribution within the porous anode is achieved; the oxygen distribution within the cathode is dependent on porous microstructure distributions as well as pressure loss conditions. Simulation results also show that fairly uniform temperature distribution can be obtained with the proposed fuel/gas feeding design. This modeling work can provide a pre-experimental analysis and guide experimental designs for BSC test.

1.
Huang
,
B.
,
Zhu
,
X. -J.
,
Hu
,
W. -Q.
,
Yu
,
Q. -C.
, and
Tu
,
H. -Y.
, 2009, “
Characteristics and Performance of Lanthanum Gallate Electrolyte-Supported SOFC Under Ethanol Steam and Hydrogen
,”
J. Power Sources
0378-7753,
186
(
1
), pp.
29
36
.
2.
Moon
,
H.
,
Kim
,
S. D.
,
Hyun
,
S. H.
, and
Kim
,
H. S.
, 2008, “
Development of IT-SOFC Unit Cells With Anode-Supported Thin Electrolytes via Tape Casting and Co-Firing
,”
Int. J. Hydrogen Energy
0360-3199,
33
(
6
), pp.
1758
1768
.
3.
Yamaguchi
,
T.
,
Shimizu
,
S.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
, 2008, “
Fabrication and Characterization of High Performance Cathode Supported Small-Scale SOFC for Intermediate Temperature Operation
,”
Electrochem. Commun.
1388-2481,
10
(
9
), pp.
1381
1383
.
4.
Greene
,
E. S.
,
Chiu
,
W. K. S.
, and
Medeiros
,
M. G.
, 2006, “
Mass Transfer in Graded Microstructure Solid Oxide Fuel Cell Electrodes
,”
J. Power Sources
0378-7753,
161
, pp.
225
231
.
5.
Deseure
,
J.
,
Bultel
,
Y.
,
Dessemond
,
L.
, and
Siebert
,
E.
, 2005, “
Theoretical Optimisation of a SOFC Composite Cathode
,”
Electrochim. Acta
0013-4686,
50
, pp.
2037
2046
.
6.
Xu
,
X.
,
Xia
,
C.
,
Xiao
,
G.
, and
Peng
,
K.
, 2005, “
Fabrication and Performance of Functionally Graded Cathodes for IT-SOFCs Based on Doped Ceria Electrolytes
,”
Solid State Ionics
0167-2738,
176
, pp.
1513
1520
.
7.
Schneider
,
L. C. R.
,
Martin
,
C. L.
,
Bultel
,
Y.
,
Dessemond
,
L.
, and
Bouvard
,
D.
, 2007, “
Percolation Effects in Functionally Graded SOFC Electrodes
,”
Electrochim. Acta
0013-4686,
52
, pp.
3190
3198
.
8.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
, 2007, “
Micro-Scale Modeling of Solid Oxide Fuel Cells With Micro-Structurally Graded Electrodes
,”
J. Power Sources
0378-7753,
168
, pp.
369
378
.
9.
Liu
,
Y.
,
Compson
,
C.
, and
Liu
,
M.
, 2004, “
Nanostructured and Functionally Graded Cathodes for Intermediate Temperature Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
138
, pp.
194
198
.
10.
Cable
,
T. L.
, and
Sofie
,
S. W.
, 2007, “
A Symmetrical, Planar SOFC Design for NASA’s High Specific Power Density Requirements
,”
J. Power Sources
0378-7753,
174
(
1
), pp.
221
227
.
11.
Hussain
,
M. M.
,
Li
,
X.
, and
Dincer
,
I.
, 2006, “
Mathematical Modeling of Planar Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
161
, pp.
1012
1022
.
12.
Shi
,
Y.
,
Cai
,
N.
, and
Li
,
C.
, 2007, “
Numerical Modeling of an Anode-Supported SOFC Button Cell Considering Anodic Surface Diffusion
,”
J. Power Sources
0378-7753,
164
, pp.
639
648
.
13.
Ahmed
,
S.
,
McPheeters
,
C.
, and
Kumar
,
R.
, 1991, “
Thermal-Hydraulic Model of a Monolithic Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
138
(
9
), pp.
2712
2718
.
14.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
, 2003, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
0378-7753,
113
(
1
), pp.
109
114
.
15.
Inui
,
Y.
,
Ito
,
N.
,
Nakajima
,
T.
, and
Urata
,
A.
, 2006, “
Analytical Investigation on Cell Temperature Control Method of Planar Solid Oxide Fuel Cell
,”
Energy Convers. Manage.
0196-8904,
47
(
15–16
), pp.
2319
2328
.
16.
Larrain
,
D.
,
Van Herle
,
J.
,
Maréchal
,
F.
, and
Favrat
,
D.
, 2003, “
Thermal Modeling of a Small Anode Supported Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
118
(
1–2
), pp.
367
374
.
17.
Nam
,
J. H.
, and
Jeon
,
D. H.
, 2006, “
A Comprehensive Micro-Scale Model for Transport and Reaction in Intermediate Temperature Solid Oxide Fuel Cells
,”
Electrochim. Acta
0013-4686,
51
, pp.
3446
3460
.
18.
Jeon
,
D. H.
,
Nam
,
J. H.
, and
Kim
,
C. -J.
, 2006, “
Microstructural Optimization of Anode-Supported Solid Oxide Fuel Cells by a Comprehensive Microscale Model
,”
J. Electrochem. Soc.
0013-4651,
153
(
2
), pp.
A406
A417
.
19.
Jeon
,
D. H.
, 2009, “
A Comprehensive CFD Model of Anode-Supported Solid Oxide Fuel Cells
,”
Electrochim. Acta
0013-4686,
54
(
10
), pp.
2727
2736
.
20.
Suzuki
,
M.
, and
Oshima
,
T.
, 1983, “
Estimation of the Co-Ordination Number in a Multi-Component Mixture of Spheres
,”
Powder Technol.
0032-5910,
35
(
2
), pp.
159
166
.
21.
Sunde
,
S.
, 2000, “
Simulations of Composite Electrode in Fuel Cells
,”
J. Electroceram.
1385-3449,
5
, pp.
153
182
.
22.
Costamagna
,
P.
,
Costa
,
P.
, and
Antonucci
,
V.
, 1998, “
Micro-Modeling of Solid Oxide Fuel Cell Electrodes
,”
Electrochim. Acta
0013-4686,
43
, pp.
375
394
.
23.
Zhao
,
F.
, and
Virkar
,
A. V.
, 2005, “
Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters
,”
J. Power Sources
0378-7753,
141
, pp.
79
95
.
You do not currently have access to this content.