Anode fuel and steam recycling are explored as possible mitigation strategies against carbon deposition in an internal methane reforming solid oxide fuel cell (IR-SOFC) operated at steam-to-carbon ratios (S:Cs) of 0.5–1. Using a detailed computational fluid dynamics model, the cell behavior and spatial extent of carbon deposits within the anode are analyzed based on a thermodynamic analysis accounting for both the cracking and Boudouard reactions for fuel and steam recycling fractions of up to 90% (mass percent). At temperatures close to 1173 K, 50% fuel recycling is found to be an effective mitigation strategy against carbon deposition, with only a minor portion of the cell inlet affected by coking. Steam recycling reduces the extent of carbon deposits by a magnitude comparable to that obtained using fuel recycling, provided that recycling ratios on the order of 25% higher than that for fuel recycling are applied. Steam recycling could therefore be considered advantageous in terms of reduced overall mass flow. The mitigating effect of fuel recycling on the susceptibility to coking at the cell inlet is found to be through the direction of the cracking reaction, while steam recycling has a positive (but slightly less effective) impact on both the Boudouard and cracking reactions. The results suggest that partial anode gas recycling could help extend the operational range of IR-SOFCs to lower fuel humidification levels than typically considered, with reduced thermal stresses and risks of carbon deposits, while reducing system cost and complexity in terms of steam production.

1.
Song
,
C.
, 2002, “
Fuel Processing for Low-Temperature and High-Temperature Fuel Cells Challenges, and Opportunities for Sustainable Development in the 21st Century
,”
Catal. Today
0920-5861,
77
, pp.
17
49
.
2.
Krumpelt
,
M.
,
Krause
,
T. R.
,
Carter
,
J. D.
,
Kopasz
,
J. P.
, and
Ahmed
,
S.
, 2002, “
Fuel Processing for Fuel Cell Systems in Transportation and Portable Power Applications
,”
Catal. Today
0920-5861,
77
, pp.
3
16
.
3.
2003,
High Temperature Solid Oxide Fuel Cells, Fundamentals, Design and Applications
,
S. C.
Singhal
and
K.
Kendall
, eds.,
Elsevier
,
Oxford
.
4.
Finnerty
,
C.
,
Tompsett
,
G. A.
,
Kendall
,
K.
, and
Ormerod
,
R. M.
, 2000, “
SOFC System With Integrated Catalytic Fuel Processing
,”
J. Power Sources
0378-7753,
86
, pp.
459
463
.
5.
Aguiar
,
P.
,
Chadwick
,
D.
, and
Kershenbaum
,
L.
, 2002, “
Modelling of an Indirect Internal Reforming Solid Oxide Fuel Cell
,”
Chem. Eng. Sci.
0009-2509,
57
(
10
), pp.
1665
1677
.
6.
Laosiripojana
,
N.
, and
Assabumrungrat
,
S.
, 2007, “
Catalytic Steam Reforming of Methane, Methanol, and Ethanol Over Ni/YSZ: The Possible Use of These Fuels in Internal Reforming SOFC
,”
J. Power Sources
0378-7753,
163
(
2
), pp.
943
951
.
7.
Clarke
,
S. H.
,
Dicks
,
A. L.
,
Pointon
,
K.
,
Smith
,
T. A.
, and
Swann
,
A.
, 1997, “
Catalytic Aspects of the Steam Reforming of Hydrocarbons in Internal Reforming Fuel Cells
,”
Catal. Today
0920-5861,
38
, pp.
411
423
.
8.
Dicks
,
A. L.
, 1998, “
Advances in Catalysts for Internal Reforming in High Temperature Fuel Cells
,”
J. Power Sources
0378-7753,
71
, pp.
111
122
.
9.
Kim
,
T.
,
Moon
,
S.
, and
Hong
,
S. I.
, 2002, “
Internal Carbon Dioxide Reforming by Methane over Ni-YSZ-CeO2 Catalyst Electrode in Electrochemical Cell
,”
Appl. Catal., A
0926-860X,
224
, pp.
111
120
.
10.
Kawano
,
M.
,
Matsui
,
T.
,
Kikuchi
,
R.
,
Yoshida
,
H.
,
Inagaki
,
T.
, and
Eguchi
,
K.
, 2007, “
Direct Internal Steam Reforming at SOFC Anodes Composed of NiO-SDC Composite Particles
,”
J. Electrochem. Soc.
0013-4651,
154
(
5
), pp.
B460
B465
.
11.
Xu
,
J.
, and
Froment
,
G. F.
, 1989, “
Methane Steam Reforming, Methanation and Water-Gas-Shift: I. Intrinsic Kinetics
,”
AIChE J.
0001-1541,
35
, pp.
88
96
.
12.
Irvine
,
J. T. S.
, and
Sauvet
,
A.
, 2001, “
Improved Oxidation of Hydrocarbons With New Electrodes in High Temperature Fuel Cells
,”
Fuel Cells
0532-7822,
1
(
3–4
), pp.
205
210
.
13.
Armor
,
J. N.
, 1999, “
The Multiple Roles for Catalysis in the Production of H2
,”
Appl. Catal., A
0926-860X,
176
, pp.
159
176
.
14.
Hou
,
K.
, and
Hughes
,
R.
, 2001, “
The Kinetics of Methane Steam Reforming Over a Ni/α-Al2O Catalyst
,”
Chem. Eng. J.
0300-9467,
82
(
1–3
), pp.
311
328
.
15.
Klein
,
J. M.
,
Bultel
,
Y.
,
Pons
,
M.
, and
Ozil
,
P.
, 2007, “
Modeling of a SOFC Fuelled by Methane: Analysis of Carbon Deposition
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
4
(
4
), pp.
425
434
.
16.
Brandon
,
N. P.
,
Skinner
,
S.
, and
Steele
,
B. C. H.
, 2003, “
Recent Advances in Materials for Fuel Cells
,”
Annual Review of Materials Research
,
K. D.
Kreuer
,
D. R.
Clarke
,
M.
Ruhle
, and
J. C.
Bravman
, eds., Vol.
33
, pp.
183
213
.
17.
Vernoux
,
P.
,
Guindet
,
J.
, and
Kleitz
,
M.
, 1998, “
Gradual Internal Methane Reforming in Intermediate-Temperature Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
(
10
), pp.
3487
3492
.
18.
Georges
,
S.
,
Parrour
,
G.
,
Henault
,
M.
, and
Fouletier
,
J.
, 2006, “
Gradual Internal Reforming of Methane: A Demonstration
,”
Solid State Ionics
0167-2738,
177
(
19–25
), pp.
2109
2112
.
19.
Klein
,
J. M.
,
Bultel
,
Y.
,
Georges
,
S.
, and
Pons
,
M.
, 2007, “
Modeling of a SOFC Fuelled by Methane: From Direct Internal Reforming to Gradual Internal Reforming
,”
Chem. Eng. Sci.
0009-2509,
62
(
6
), pp.
1636
1649
.
20.
Iida
,
T.
,
Kawano
,
M.
,
Matsui
,
T.
,
Kikuchi
,
R.
, and
Eguchi
,
K.
, 2007, “
Internal Reforming of SOFCs, Carbon Deposition on Fuel Electrode and Subsequent Deterioration of Cell
,”
J. Electrochem. Soc.
0013-4651,
154
(
2
), pp.
B234
B241
.
21.
Wang
,
X.
, and
Gorte
,
R. J.
, 2002, “
A Study of Steam Reforming of Hydrocarbon Fuels on Pd/Ceria
,”
Appl. Catal., A
0926-860X,
224
(
1–2
), pp.
209
218
.
22.
Zhu
,
H.
,
Colclasure
,
A.
,
Kee
,
R.
,
Lin
,
Y.
, and
Barnett
,
S.
, 2006, “
Anode Barrier Layers for Tubular Solid-Oxide Fuel Cells With Methane Fuel Streams
,”
J. Power Sources
0378-7753,
161
(
1
), pp.
413
419
.
23.
Lin
,
Y.
,
Zhan
,
Z.
,
Liu
,
J.
, and
Barnett
,
S. A.
, 2005, “
Direct Operation of Solid Oxide Fuel Cells With Methane Fuel
,”
Solid State Ionics
0167-2738,
176
, pp.
1827
1835
.
24.
Sun
,
C.
, and
Stimming
,
U.
, 2007, “
Recent Anode Advances in Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
171
, pp.
247
260
.
25.
Zhan
,
Z.
,
Liu
,
J.
, and
Barnett
,
S. A.
, 2004, “
Operation of Anode-Supported Solid Oxide Fuel Cells on Propane–Air Fuel Mixtures
,”
Appl. Catal., A
0926-860X,
262
, pp.
255
259
.
26.
Peters
,
R.
,
Dahl
,
R.
,
Kluttgen
,
U.
,
Palm
,
C.
, and
Stolten
,
D.
, 2002, “
Internal Reforming of Methane in Solid Oxide Fuel Cell Systems
,”
J. Power Sources
0378-7753,
106
, pp.
238
244
.
27.
Stiller
,
C.
,
Thorud
,
B.
,
Seljebo
,
S.
,
Mathisen
,
O.
,
Karoliussen
,
H.
, and
Bolland
,
O.
, 2005, “
Finite-Volume Modeling and Hybrid-Cycle Performance of Planar and Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
141
(
2
), pp.
227
240
.
28.
Achenbach
,
E.
, 1994, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
0378-7753,
49
(
1–3
), pp.
333
348
.
29.
Colpan
,
C. O.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
, 2007, “
Thermodynamic Modeling of Direct Internal Reforming Solid Oxide Fuel Cells Operating With Syngas
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
7
), pp.
787
795
.
30.
Iwata
,
M.
,
Hikosaka
,
T.
,
Morita
,
M.
,
Iwanari
,
T.
,
Ito
,
K.
,
Onda
,
K.
,
Esaki
,
Y.
,
Sakaki
,
Y.
, and
Nagata
,
S.
, 2000, “
Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,”
Solid State Ionics
0167-2738,
132
(
3–4
), pp.
297
308
.
31.
Nikooyeh
,
K.
,
Jeje
,
A. A.
, and
Hill
,
J. M.
, 2007, “
3D Modeling of Anode-Supported Planar SOFC With Internal Reforming of Methane
,”
J. Power Sources
0378-7753,
171
(
2
), pp.
601
609
.
32.
Calise
,
F.
,
Palombo
,
A.
, and
Vanoli
,
L.
, 2006, “
Design and Partial Load Exergy Analysis of Hybrid SOFC-GT Plant
,”
J. Power Sources
0378-7753,
158
, pp.
225
244
.
33.
Santin
,
M.
,
Traverso
,
A.
, and
Magistri
,
L.
, 2009, “
Liquid Fuel Utilization in SOFC Hybrid Systems
,”
Appl. Energy
0306-2619,
86
(
10
), pp.
2204
2212
.
34.
Brett
,
D. J. L.
,
Aguiar
,
P.
, and
Brandon
,
N. P.
, 2006, “
System Modeling and Integration of an Intermediate Temperature Solid Oxide Fuel Cell and ZEBRA Battery for Automotive Applications
,”
J. Power Sources
0378-7753,
163
, pp.
514
522
.
35.
Burke
,
A. A.
, and
Carreiro
,
L. G.
, 2006, “
System Modeling of an Air-Independent Solid Oxide Fuel Cell System for Unmanned Undersea Vehicles
,”
J. Power Sources
0378-7753,
158
, pp.
428
435
.
36.
Eveloy
,
V.
, and
Daoudi
,
M.
, 2008, “
Numerical Investigation of the Effect of Fuel Recycling on the Susceptibility of a Direct Internal Methane Reforming SOFC Carbon Deposition
,” ASME Paper No. IMECE2008-67870.
37.
Westerterp
,
K. R.
,
Van Swaaij
,
W. P. M.
, and
Beenackers
,
A. A. C. M.
, 1984,
Chemical Reactor Design and Operation
,
Wiley
,
New York
.
38.
Kee
,
R. J.
,
Zhu
,
H.
,
Sukeshini
,
A. M.
, and
Jackson
,
G. S.
, 2008, “
Solid Oxide Fuel Cells: Operating Principles, Current Challenges, and the Role of Syngas
,”
Combust. Sci. Technol.
0010-2202,
180
(
6
), pp.
1207
1244
.
39.
Pomfret
,
M. B.
,
Owrutsky
,
J. C.
, and
Walker
,
R. A.
, 2007, “
In Situ Studies of Fuel Oxidation in Solid Oxide Fuel Cells
,”
Anal. Chem.
0003-2700,
79
, pp.
2367
2372
.
40.
Wei
,
J.
, and
Iglesia
,
E.
, 2004, “
Isotopic and Kinetic Assessment of the Mechanism of Reactions of CH4 With CO2 or H2O to Form Synthesis Gas and Carbon on Nickel Catalysts
,”
J. Catal.
0021-9517,
224
, pp.
370
383
.
41.
Andersson
,
M.
,
Yuan
,
J.
, and
Sundén
,
B.
, 2010, “
Review on Modeling Development for Multiscale Chemical Reactions Coupled Transport Phenomena in Solid Oxide Fuel Cells
,”
Appl. Energy
0306-2619,
87
(
5
), pp.
1461
1476
.
42.
Hecht
,
E. S.
,
Gupta
,
G. K.
,
Zhu
,
H.
,
Dean
,
A. M.
,
Kee
,
R. J.
,
Maier
,
L.
, and
Deutschmann
,
O.
, 2005, “
Methane Reforming Kinetics Within a Ni–YSZ SOFC Anode Support
,”
Appl. Catal., A
0926-860X,
295
, pp.
40
51
.
43.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2004, “
Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated-Planar Solid Oxide Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3617
3629
.
44.
Gemmen
,
R. S.
, and
Trembly
,
J.
, 2006, “
On the Mechanisms and Behavior of Coal Syngas Transport and Reaction Within the Anode of a Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
161
, pp.
1084
1095
.
45.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
, 2000, “
Modelling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
0378-7753,
87
, pp.
57
63
.
46.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Definition and Sensitivity Analysis of a Finite Volume SOFC Model for a Tubular Cell Geometry
,”
J. Power Sources
0378-7753,
132
, pp.
113
126
.
47.
Zhu
,
H.
,
Kee
,
R. J.
,
Janardhanan
,
V. M.
,
Deutschmann
,
O.
, and
Goodwin
,
D. G.
, 2005, “
Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
152
(
12
), pp.
A2427
A2440
.
48.
Janardhanan
,
V. M.
, and
Deutschmann
,
O.
, 2006, “
CFD Analysis of a Solid Oxide Fuel Cell With Internal Reforming: Coupled Interactions of Transport, Heterogeneous Catalysis and Electrochemical Processes
,”
J. Power Sources
0378-7753,
162
, pp.
1192
1202
.
49.
Janardhanan
,
V. M.
,
Heuveline
,
V.
, and
Deutschmann
,
O.
, 2007, “
Performance Analysis of a SOFC Under Direct Internal Reforming Conditions
,”
J. Power Sources
0378-7753,
172
, pp.
296
307
.
50.
COMSOL AB
, 2008, COMSOL MULTIPHYSICS Version 3.5a User’s Guide.
51.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
, 2004, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell I: Model-Based Steady-State Performance
,”
J. Power Sources
0378-7753,
138
, pp.
120
136
.
52.
Boder
,
M.
, and
Dittmeyer
,
R.
, 2006, “
Catalytic Modification of Conventional SOFC Anodes With a View to Reducing Their Activity for Direct Internal Reforming of Natural Gas
,”
J. Power Sources
0378-7753,
155
(
1
), pp.
13
22
.
You do not currently have access to this content.