Silica is a well-known impurity in solid oxide fuel cell raw materials, namely NiO and yttria-stabilized zirconia (YSZ). At elevated temperatures silica will migrate to the grain boundaries, form insulating siliceous phases, and lead to a decrease in the ionic conductivity of the electrolyte. Furthermore, silica impurities have been shown to damage the anode/electrolyte interface, such that an overall decrease in cell performance and long-term stability is observed. Despite the fact that silica is ubiquitous in commercial-grade raw materials and can be incorporated from several extrinsic sources, it has negative effects on the solid oxide fuel cell, such that any further contamination should be avoided to prevent performance degradation and eventual cell failure. This paper reviews and outlines the sources and effects of silica on the solid oxide fuel cell, and attempts to determine a guideline for acceptable levels of silica contamination.

References

1.
Gerven
,
R. J. F. van
, 2003,
“System and Applications,” High Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications
,
S. C.
Singhal
and
K.
Kendall
, eds.,
Elsevier Science Ltd.
, pp.
363
392
.
2.
IEA, International Energy Agency, and OECD, Organization for Economic Co-operation and Development, 2004, Renewable Energy: Market & Policy Trends in IEA Countries, OECD/IEA, Paris, France, pp.
6
, 56, 198–202.
3.
Fontell
,
E.
,
Phan
,
T.
,
Kivisaari
,
T.
, and
Keränen
,
K.
, 2006, “
Solid Oxide Fuel Cell System and the Economical Feasibility
,”
J. Fuel Cell Sci. Technol.
,
3
, pp.
242
253
.
4.
Karakoussis
,
V.
,
Leach
,
M.
,
Vorst
,
R. V. D.
,
Hart
,
D.
,
Lane
,
J.
,
Pearson
,
P.
, and
Kilner
,
J.
, 2000, “
Environmental Emissions of SOFC and SPFC System Manufacture and Disposal
,” Report No. F/01/00164/REP, Imperial College, UK London.
5.
Armand
,
M.
, and
Tarascon
,
J. -M
., 2008, “
Building Better Batteries
,”
Nature
,
451
(
7
), pp.
652
657
.
6.
Schlapbach
,
L.
, 2009, “
Hydrogen-Fuelled Vehicles
,”
Nature
,
460
(
13
), pp.
809
811
.
7.
Yamamoto
,
O.
, 2000, “
Solid Oxide Fuel Cells: Fundamental Aspects and Prospects
,”
Electrochim. Acta
,
45
(
15–16
), pp.
2423
2435
.
8.
Singhal
,
S. C.
, 2002, “
Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications
,”
Solid State Ionics
,
152–153
, pp.
504
410
.
9.
Williams
,
M. C.
,
Strakeya
,
J. P.
,
Surdovala
,
W. A.
, and
Wilson
,
L. C.
, 2006, “
Solid Oxide Fuel Cell Technology Development in the U.S.
,”
Solid State Ionics
,
177
(
19–25
), 2006 pp.
2039
2044
.
10.
Shao
,
Z.
,
Haile
,
S. M.
, 2004, “
A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells
,”
Nature
,
431
(
7005
), pp.
170
173
.
11.
Tao
,
S.
, and
Irvine
,
J. T. S.
, 2003, “
A Redox-Stable Efficient Anode for Solid-Oxide Fuel Cells
,”
Nature Mater.
,
2
, pp.
320
323
.
12.
McIntosh
,
S.
, and
Gorte
,
R. J.
, 2004, “
Direct Hydrocarbon Solid Oxide Fuel Cells
,”
Chem. Rev.
,
104
, pp.
4845
4865
.
13.
Steele
,
B. C. H.
, 2001, “
Material Science and Engineering: The Enabling Technology for the Commercialization of Fuel Cell Systems
,”
J. Mater. Sci.
,
36
(
5
), pp.
1053
1068
.
14.
Steele
,
B. C. H.
, and
Heinzel
,
A.
, 2001, “
Materials for Fuel-Cell Technologies
,”
Nature
,
414
, pp.
345
352
.
15.
Steele
,
B. C. H.
, 2000, “
Appraisal of Ce1−yGdyO2−y/2 Electrolytes for IT-SOFC Operation at 500°C
,”
Solid State Ionics
129
, pp.
95
110
.
16.
Singh
,
P
, and
Minh
,
N. Q.
, 2005, “
Solid Oxide Fuel Cells: Technology Status
,”
International J. Appl. Ceram. Technol.
,
1
(
1
), pp.
5
15
.
17.
Horita
,
T.
,
Kishimoto
,
H.
,
Yamaji
,
K.
,
Brito
,
M. E.
,
Xiong
,
Y.
,
Yokokawa
,
H.
,
Hori
,
Y.
, and
Miyachi
,
I.
, 2009, “
Effects of Impurities on the Degradation and Long-Term Stability for Solid Oxide Fuel Cells
,”
J. Power Sources
,
193
, pp.
194
198
.
18.
Figueiredo
,
F. M. L.
,
Kharton
,
V. V.
, and
Marques
,
F. M. B.
, 2008, “
Heterogeneous Ceramics Formed by Grain Boundary Engineering
,”
Ionics
14
, pp.
349
356
.
19.
Guo
,
X.
, and
Waser
,
R.
, 2006, “
Electrical Properties of the Grain Boundaries of Oxygen ion Conductors: Acceptor-doper Zirconia and Ceria
,”
Prog. Mater. Sci.
,
51
, pp.
151
210
.
20.
Verkerk
,
M. J.
,
Winnubst
,
A. J. A.
, and
Burggraaf
,
A. J.
, 1982, “
Effect of Impurities on Sintering and Conductivity of Yttria-stabilized Zirconia
,”
J. Mater. Sci.
,
17
, pp.
3113
3122
.
21.
Badwal
,
S. P. S.
, and
Drennan
,
J.
, 1987, “
Yttria-zirconia: Effect of Microstructure on Conductivity
,”
J. Mater. Sci.
,
22
, pp.
3231
3239
.
22.
Mecartney
,
M. L.
, 1987, “
Influence of an Amorphous Second Phase on the Properties of Yttria-stabilized Tetragonal Zirconia Polycrystals Y-TZP
,”
J. Am. Ceram. Soc.
,
70
(
1
), pp.
54
58
.
23.
Badwal
,
S. P. S.
, and
Drennan
,
J.
, 1989, “
Grain Boundary Resistivity in Y-TZP Materials as a Function of Thermal History
,”
J. Mater. Sci.
,
24
, pp.
88
96
.
24.
Jacobson
,
N. S.
,
Opila
,
E. J.
,
Myers
,
D. L.
, and
Copland
,
E. H.
, 2005, “
Thermodynamics of Gas Phase Species in the Si–O–H System
,”
J. Chem. Thermodyn.
,
37
, pp.
1130
1137
.
25.
Butler
,
E. P.
, and
Drennan
,
J.
, 1982, “
Microstructural Analysis of Sintered High-Conductivity Zirconia With Al2O3 Additions
,”
J. Am. Ceram. Soc.
,
65
(
10
), pp.
474
478
.
26.
Dong
,
Q.
,
Du
,
Z. H.
,
Zhang
,
T. S.
,
Lu
,
J.
,
Song
,
X. C.
, and
Ma
,
J.
, 2009, “
Sintering and Ionic Conductivity of 8YSZ and CGO10 Electrolytes With Small Addition of Fe2O3: A Comparative Study
,”
Int. J. Hydrogen Energy
,
34
, pp.
7903
7909
.
27.
Dudek
,
M.
, 2008, “
Composite Oxide Electrolytes for Electrochemical Devices
,”
Adv. Mater. Sci.
,
8
(
1
), pp.
15
30
.
28.
Zhang
,
T.
,
Zeng
,
Z.
,
Huang
,
H.
,
Hing
,
P.
, and
Kilner
,
J.
, 2002, “
Effect of Alumina Addition on the Electrical and Mechanical Properties of Ce0:8Gd0.2O2d Ceramics
,”
Mater. Lett.
,
57
, pp.
124
129
.
29.
Tao
,
S.
, and
Irvine
,
J. T. S.
, 2001, “
Preparation and Characterization of Apatite-Type Lanthanum Silicates by a Sol–Gel Process
,”
Mater. Res. Bull.
36
, pp.
1245
1258
.
30.
Beekmans
,
N. M.
, and
Heyne
,
L.
, 1976, “
Correlation Between Impedance, Microstructure and Composition of Calcia-Stabilized Zirconia
,”
Electrochim. Acta
21
, pp.
303
310
.
31.
Zhang
,
T. S.
,
Ma
,
J.
,
Kong
,
L. B.
,
Chan
,
S. H.
,
Hing
,
P.
, and
Kilner
,
J. A.
, “
Iron Oxide as An Effective Sintering Aid and A Grain Boundary Scavenger for Ceria-Based Electrolytes
,”
Solid State Ionics
167
, pp.
203
207
(2004).
32.
Nakayama
,
S.
,
Kageyama
,
T.
,
Aono
,
H.
, and
Sadaoka
,
Y.
, 1995, “
Ionic Conductivity of Lanthanoid Silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb)
,”
J. Mater. Chem.
5
, pp.
1801
1805
.
33.
Feighery
,
A. J
., and
Irvine
,
J. T. S.
, 1999, “
Effect of Alumina Additions upon Electrical Properties of 8 mol.% Yttria-Stabilised Zirconia
,”
Solid State Ionics
,
121
, pp.
209
216
.
34.
Mori
,
M.
,
Abe
,
T.
,
Itoh
,
H.
,
Yamamoto
,
O.
,
Takeda
,
Y.
, and
Kawahara
,
T.
, 1994, “
Cubic-Stabilized Zirconia and Alumina Composites as Electrolytes in Planar Type Solid Oxide Fuel Cells
,”
Solid State Ionics
,
74
(
3–4
), pp.
157
164
.
35.
Hughes
,
A. E.
, and
Sexton
,
B. A.
, 1989, “
XPS Study of an Intergranular Phase in Yttria-Zirconia
,”
J. Mater. Sci.
,
24
, pp.
1057
1061
.
36.
Badwal
,
S. P. S.
, and
Drennan
,
J.
, 1990, “
Evaluation of Conducting Properties of Yttria-Zirconia Wafers
,”
Solid State Ionics
,
40/41
, pp.
869
873
.
37.
Badwal
,
S. P. S.
,
Ciacchi
,
F. T.
, and
Hannink
,
R. H. J.
, 1990, “
Relationship Between Phase Stability and Conductivity of Yttria Tetragonal Zirconia
,”
Solid State Ionics
,
40/41
, pp.
882
885
.
38.
Hughes
,
A. E.
, and
Badwal
,
S. P. S.
, 1991, “
Impurity and Yttrium Segregation in Yttria-Tetragonal Zirconia
,”
Solid State Ionics
,
46
, pp.
265
274
.
39.
Badwal
,
S. P. S.
, 1992, “
Zirconia-Based Solid Electrolytes: Microstructure, Stability and Ionic Conductivity
,”
Solid State Ionics
,
52
, pp.
23
32
.
40.
Badwal
,
S. P. S.
, and
Rajendran
,
S.
, 1994, “
Effect of Micro- and Nano-Structures on the Properties of Ionic Conductors
,”
Solid State Ionics
,
70–71
, pp.
83
95
.
41.
Ciacchi
,
F. T.
,
Crane
,
K. M.
, and
Badwal
,
S. P. S.
, 1994, “
Evaluation of Commercial Zirconia Powders for Solid Oxide Fuel Cells
,”
Solid State Ionics
,
73
, pp.
49
61
.
42.
Gödickemeier
,
M.
,
Michel
,
B.
,
Orliukas
,
A.
,
Bohac
,
P.
,
Sasaki
,
K.
,
Gauckler
,
L.
,
Heinrich
,
H.
,
Schwander
,
P.
,
Kosotorz
,
G.
,
Hofmann
,
H.
, and
Frei
,
O.
, 1994, “
Effect of Intergranular Glass Films on the Electrical Conductivity of 3Y-TZP
,”
J. Mater. Res.
,
9
, pp.
1228
1240
.
43.
Guo
,
X.
, and
Yuan
,
R.-Z.
, 1995, “
On the Grain Boundaries of ZrO2-based Solid Electrolyte
,”
Solid State Ionics
,
80
, pp.
159
166
.
44.
Aoki
,
M.
,
Chiang
,
Y.-M.
,
Kosacki
,
I.
,
Lee
,
L. J.-R. J.-R.
,
Tuller
,
H.
, and
Liu
,
Y.
, 1996, “
Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia
,”
J. Am. Ceram. Soc.
,
79
(
5
), pp.
1169
1180
.
45.
Rodrigues
,
M. S.
,
Labrincha
,
J. A.
, and
Marques
,
F. M. B.
, 1997, “
Study of Yttria-Stabilized Zirconia-Glass Composites by Impedance Spectroscopy
,”
J. Electrochem. Soc.
,
144
(
12
), pp.
4303
4309
.
46.
Badwal
,
S. P. S.
,
Ciacchi
,
F. T.
, and
Zelizko
,
V.
, 1998, “
The Effect of Alumina Addition on the Conductivity, Microstructure and Mechanical Strength of Zirconia–Yttria Electrolytes
,”
Ionics
,
4
, pp.
25
32
.
47.
Rodrigues
,
C. M. S.
,
Labrincha
,
J. A.
, and
Marques
,
F. M. B.
, 1998, “
Monitoring of the Corrosion of YSZ by Impedance Spectroscopy
,”
J. Eur. Ceram. Soc.
,
18
, pp.
95
104
.
48.
Appel
,
C. C.
, and
Bonanos
,
N.
, 1999, “
Structural and Electrical Characterisation of Silica-Containing Yttria-Stabilized Zirconia
,”
J. Eur. Ceram. Soc.
,
19
, pp.
847
851
.
49.
Badwal
,
S. P. S.
, and
Ciacchi
,
F. T.
, 2000, “
Oxygen-Ion Conducting Electrolyte Materials for Solid Oxide Fuel Cells
,”
Ionics
,
6
(
1–2
), pp.
1
21
.
50.
Lee
,
J.-H.
,
Mori
,
T.
,
Li
,
J.-G.
,
Ikegami
,
T.
Komatsu
,
M.
, and
Haneda
,
H.
, 2000, “
Improvement of Grain-Boundary Conductivity of 8 mol% Yttria-Stabilized Zirconia by Precursor Scavenging of Siliceous Phase
,”
J. Electrochem. Soc.
,
147
(
7
), pp.
2822
2829
.
51.
Vels Jensen
,
K.
,
Primdahl
,
S.
,
Chorkendorff
,
I.
, and
Mogensen
,
M.
, 2001, “
Microstructural and Chemical Changes at the Ni/YSZ Interface
,”
Solid State Ionics
,
144
, pp.
197
209
.
52.
Vels Jensen
,
K.
,
Wallenberg
,
R.
,
Chorkendorff
,
I.
, and
Mogensen
,
M.
, 2003, “
Effect of Impurities on Structural and Electrochemical Properties of the Ni-YSZ Interface
,”
Solid State Ionics
,
160
, pp.
27
37
.
53.
Martin
,
M. C.
, and
Mecartney
,
M. L.
, 2003, “
Grain Boundary Ionic Conductivity of Yttrium Stabilized Zirconia as a Function of Silica Content and Grain Size
,”
Solid State Ionics
,
161
, pp.
67
79
.
54.
Petot-Ervas
,
G.
,
Petot
,
C. M.
,
Raulot
,
J.
,
Kusinski
,
J.
,
Sproule
,
I.
, and
Graham
,
M.
, 2003, “
Role of the Microstructure on the Transport Properties of Y-Doped Zirconia and Gd-Doped Ceria
,”
Ionics
,
9
, pp.
195
201
.
55.
Hansen
,
K. V.
,
Norrman
,
K.
, and
Mogensen
,
M.
, 2004, “
H2-H2O-Ni-YSZ Electrode Performance
,”
J. Electrochem. Soc.
,
151
(
9
), pp.
A1436
A1444
.
56.
Schmidt
,
M. S.
,
Hansen
,
K. V.
,
Norrman
,
K.
, and
Mogensen
,
M.
, 2008, “
Effects of Trace Elements at the Ni/ScYSZ Interface in a Model Solid Oxide Fuel Cell Anode
,”
Solid State Ionics
,
179
, pp.
1436
1441
.
57.
Huang
,
Q.-A.
,
Hui
,
R.
,
Wang
,
B.
, and
Zhang
,
J.
, 2007, “
A Review of AC Impedance Modeling and Validation in SOFC Diagnosis
,”
Electrochim. Acta
,
52
, pp.
8144
8164
.
58.
Cho
,
P.-S.
,
Cho
,
Y. H.
,
Park
,
S.-Y.
,
Lee
,
S. B.
,
Kim
,
D.-Y.
,
Park
,
H.-M.
,
Auchterlonie
,
G.
,
Drennan
,
J.
, and
Lee
,
J.-H.
, 2009, “
Grain-Boundary Conduction in Gadolinia-Doped Ceria: The Effect of SrO Addition
,”
J. Electrochem. Soc.
,
156
(
3
), pp.
B339
B344
.
59.
Badwal
,
S. P. S.
, 1984, “
Electrical Conductivity of Single Crystal and PolyCrystalline Yttria-Stabilized Zirconia
,”
J. Mater. Sci.
,
19
(
6
), pp.
1767
1776
.
60.
Badwal
,
S. P. S.
, 1995, “
Grain Boundary Resistivity in Zirconia-Based Materials: Effect of Sintering Temperatures and Impurities
,”
Solid State Ionics
,
76
, pp.
67
80
.
61.
Kovalevsky
,
A. V.
,
Marques
,
F. M. B.
,
Kharton
,
V. V.
,
Maxim
,
F.
, and
Frade
,
J. R.
, 2006, “
Silica-Scavenging Effect in Zirconia Electrolytes: Assessment of Lanthanum Silicate Formation
,”
Ionics
,
12
, pp.
79
184
.
62.
Mori
,
M.
,
Abe
,
T.
,
Itoh
,
H.
,
Yamamoto
,
O.
,
Takeda
,
Y.
, and
Kawahara
,
T.
, 1994, “
Cubic-Stabilized Zirconia and Alumina Composites as Electrolytes in Planar Type Solid Oxide Fuel Cells
,”
Solid State Ionics
,
74
(
3–4
), pp.
157
164
.
63.
Mori
,
M.
,
Yosikawa
,
M.
Itoh
,
H.
, and
Abe
,
T.
, 1994, “
Effect of Alumina on Sintering Behavior and Electrical Conductivity of High-Purity Yttria-Stabilized Zirconia
,”
J. Am. Ceram. Soc.
,
77
(
8
), pp.
2217
2219
.
64.
Zhang
,
T. S.
,
Ma
,
J.
,
Chen
,
Y. Z. L.
,
Luo
,
H.
,
Kong
,
L. B.
, and
Chan
,
S. H.
, 2006, “
Different Conduction Behaviors of Grain Boundaries in SiO2-Containing 8YSZ and CGO20 Electrolytes
,”
Solid State Ionics
,
177
, pp.
1227
1235
.
65.
Hughes
,
A. E.
, and
Badwal
,
S. P. S.
, 1990, “
Impurity Segregation Study at the Surface of Yttria-Zirconia Electrolytes by XPS
,”
Solid State Ionics
,
40/41
, pp.
312
315
.
66.
Liu
,
Y. L.
,
Primdahl
,
S.
, and
Mogensen
,
M.
, 2003, “
Effects of Impurities on Microstructure in Ni/YSZ-YSZ Half-Cells for SOFC
,”
Solid State Ionics
,
161
, pp.
1
10
.
67.
Verkerk
,
M. J.
,
Middelhuis
,
B. J.
, and
Burggraaf
,
A. J.
, 1982, “
Effect of Grain Boundaries on the Conductivity of High-Purity ZrO2–Y2O3 Ceramics
,”
Solid State Ionics
,
6
, pp.
159
170
.
68.
Tekeli
,
S.
,
Erdogan
,
M.
, and
Aktas
,
B.
, 2004, “
Microstructural Evolution in 8 mol% Y2O3-Stabilized Cubic Zirconia (8YSCZ) With SiO2 Addition
,”
Mater. Sci. Eng.
,
A386
, pp.
1
9
.
69.
Tekeli
,
S.
,
Boyacioğlu
,
T.
, and
Güral
,
A.
, 2008, “
The Effect of Silica Doping on the Microstructure and Mechanical Properties of c-ZrO2/SiO2 Composites
,”
Ceram. Int.
,
34
, pp.
1959
1964
.
70.
Tekeli
,
S.
, and
Gürü
,
M
., 2007, “
Indentation Fracture Toughness and Hardness of Solid Oxide Fuel Cell Electrolyte Material
,”
Key Eng. Mater.
,
336–338
, pp.
2418
2421
.
71.
Tekeli
,
S.
and
Gürü
,
M.
, 2008, “
Microstructural Design and High Temperature Tensile Deformation Behavior of 8 mol% Yttria Stabilized Cubic Zirconia (8YCSZ) With SiO2 Additions
,”
Ceram. Int.
,
34
, pp.
137
140
.
72.
Sharif
,
A. A.
, and
Mecartney
,
M. L.
, 2003, “
Superplasticity in Cubic Yttria-Stabilized Zirconia With Intergranular Silica
,”
Acta Mater.
,
51
, pp.
1633
1639
.
73.
Liu
,
Y. L.
, and
Jiao
,
C.
, 2005, “
Microstructure Degradation of an Anode/Electrolyte Interface in SOFC Studied by Transmission Electron Microscopy
,”
Solid State Ionics
,
176
, pp.
435
442
.
74.
Ray
,
E. R.
, and
Maskalick
,
N. J.
, 1993, “
Contaminant Effects in Solid Oxide Fuel Cells
,” Technical Report DOE/MC/26355-94/C0254, Westinghouse Electric Corporation.
75.
Singh
,
P.
, and
Vora
,
S. D.
, 2005, “
Vapor Phase Silica Transport During SOFC Operation at 1000°C
,”
Ceramic Engineering and Science Proceedings
,
N. P.
Bansal
, eds.,
Wiley
, Vol.
4
, pp.
99
110
.
76.
Jacobson
,
N. S.
,
Myers
,
D. L.
,
Opila
,
E. J.
, and
Copland
,
E. H.
, 2005, “
Interactions of Water Vapor With Oxide at Elevated Temperatures
,”
J. Phys. Chem. Solids
,
66
, pp.
471
478
.
77.
Jacobson
,
N. S.
,
Opila
,
E. J.
,
Myers
,
D. L.
, and
Copland
,
E. H.
, 2005, “
Thermodynamics of Gas Phase Species in the Si-O-H System
,”
J. Chem. Thermodyn.
,
37
, pp.
1130
1137
.
78.
Fergus
,
J. W.
, 2005, “
Sealants for Solid Oxide Fuel Cells
,”
J. Power Sources
,
147
, pp.
46
57
.
79.
Singh
,
R. N.
, 2006, “
High-temperature Seals for Solid Oxide Fuel Cells (SOFC)
,”
J. Mater. Eng. Perform.
,
15
, pp.
422
426
.
80.
Lessing
,
P. A.
, 2007, “
A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells
,”
J. Mater. Sci.
,
42
, pp.
3465
3476
.
81.
Zhu
,
Q.
,
Peng
,
L.
, and
Zhang
,
T.
, 2007,
“Stable Glass Seals for Intermediate Temperature (IT) SOFC Applications,” Fuel Cell Electronics Packaging
,
K.
Kuang
, ed.,
Springer
,
New York
, pp.
33
60
.
82.
Hauch
,
A.
,
Jensen
,
S. H.
,
Bilde-Sørensen
,
J. B.
, and
Mogensen
,
M.
, 2007, “
Silica Segregation in the Ni/YSZ Electrode
,”
J. Electrochem. Soc.
,
154
(
7
), pp.
A619
A626
.
83.
de Ridder
,
M.
,
Vervoot
,
A. G. J.
,
van Welzenis
,
R. G.
, and
Brongersma
,
H. H.
, 2003, “
The Limiting Factor for Oxygen Exchange at the Surface of Fuel Cell Electrolytes
,”
Solid State Ionics
,
156
, pp.
255
262
.
84.
Zhang
,
T. S.
,
Ma
,
J.
,
Kong
,
B. L.
,
Hing
,
P.
,
Leng
,
Y. J.
,
Chan
,
S. H.
, and
Kilner
,
J. A.
, 2003, “
Sinterability and Ionic Conductivity of Coprecipitated Ce0.8Gd0.2O2δ Powders Treated via a High-Energy Ball-Milling Process
,”
J. Power Sources
,
124
, pp.
26
33
.
85.
Zhang
,
T. S.
,
Ma
,
J.
,
Leng
,
Y. J.
,
Chan
,
S. H.
,
Hing
,
P.
, and
Kilner
,
J. A.
, 2004, “
Effect of Transition Metal Oxides on Densification and Electrical Properties of Si-Containing Ce0.8Gd0.2O2-δ Ceramics
,”
Solid State Ionics
,
168
, pp.
187
195
.
86.
Murai
,
T.
,
Yashiro
,
K.
,
Kaimai
,
A.
,
Otake
,
T.
,
Matsumoto
,
H.
,
Kawada
,
T.
, and
Mizusaki
,
J.
, 2005, “
Application of FT-IR for in Situ Investigation of High Temperature Electrode Reactions
,”
Solid State Ionics
,
176
, pp.
2399
2403
.
87.
Viitanen
,
M. M.
,
van Welzenis
,
R. G.
,
Brongersma
,
H. H.
, and
Berkel
,
F. P. F. van
, 2002, “
Silica Poisoning of Oxygen Membranes
,”
Solid State Ionics
,
150
, pp.
223
228
.
88.
Wheeldon
,
I.
,
Caners
,
C.
,
Karan
,
K.
, and
Peppley
,
B.
, 2007, “
Utilization of Biogas Generated From Ontario Wastewater Treatment Plants in Solid Oxide Fuel Cell Systems: A Process Modeling Study
,”
Int. J. Green Energy
,
4
, pp.
221
231
.
89.
Haga
,
K.
,
Adachi
,
S.
,
Shiratori
,
Y.
,
Itoh
,
K.
, and
Sasaki
,
K.
, 2008, “
Poisoning of SOFC Anodes by Various Fuel Impurities
,”
Solid State Ionics
,
179
, pp.
1427
1431
.
90.
Primdahl
S.
, and
Mogensen
,
M.
, 2000, “
Durability and Thermal Cycling of Ni/YSZ Cermet Anodes for Solid Oxide Fuel Cells
,”
J. Appl. Electrochem.
30
, pp.
247
257
.
91.
Kuîsîcer
,
D.
,
Holc
,
J.
,
Hrovat
,
M.
,
Bernik
,
S.
,
Samardîzija
,
Z.
, and
Kolar
,
D.
, 1995, “
Interactions Between a Think Film LaMnO3 Cathode and YSZ SOFC Electrolyte During High Temperature Ageing
,”
Solid State Ionics
,
78
, pp.
79
85
.
92.
Lee
,
J.-H.
,
Kim
,
D.-K.
, and
Kim
,
D.-Y.
, 2008, “
Milicontact Impedance Spectroscopic Analysis in Stabilized Zirconia and Gadolinia-Doped Ceria
,”
Solid State Ionics
,
179
, pp.
966
970
.
93.
Guo
,
X.
, and
Yuan
,
R.-Z.
, 1995, “
Roles of Alumina in Zirconia-Based Solid Electrolyte
,”
J. Mater. Sci.
,
30
, pp.
923
931
.
94.
Guo
,
X.
,
Tang
,
C.-Q.
, and
Yuan
,
R.-Z.
, 1995, “
Grain Boundary Ionic Conduction in Zirconia-Based Solid Electrolyte With Alumina Addition
,”
J. Eur. Ceram. Soc.
,
15
, pp.
25
32
.
You do not currently have access to this content.