The reliability of microelectronic components is profoundly influenced by the interfacial fracture resistance (adhesion) and associated progressive debonding behavior. In this study we examine the interfacial fracture properties of representative polymer interfaces commonly found in microelectronic applications. Specifically, interface fracture mechanics techniques are described to characterize adhesion and progressive bebonding behavior of a polymer/metal interface under monotonic and cyclic fatigue loading conditions. Cyclic fatigue debond-growth rates were measured from ~10−11 to 10−6 m/cycle and found to display a power–law dependence on the applied strain energy release rate range, ΔG. Fracture toughness test results show that the interfaces typically exhibit resistance-curve behavior, with a plateau interface fracture resistance, Gss, strongly dependent on the interface morphology and the thickness of the polymer layer. The effect of a chemical adhesion promoter on the fracture energy of a polymer/silicon interface was also characterized. Micromechanisms controlling interfacial adhesion and progressive debonding are discussed in terms of the prevailing deformation mechanisms and related to interface structure and morphology.

1.
Azimi
H. R.
,
Pearson
R. A.
, and
Hertzberg
R. W.
,
1995
, “
Role of Crack Tip Shielding in Fatigue of Hybrid Epoxy Composites Containing Rubber and Solid Glass Spheres
,”
J. App. Polymer Sci.
, Vol.
58
, pp.
449
63
.
2.
Clark
T. R.
,
Hertzberg
R. W.
, and
Mohammadi
N.
,
1993
, “
Fatigue Mechanisms in Poly (Methyl Methacrylate) at Threshold: Effects of Molecular Weight and Mean Stress
,”
J. Mat. Sci.
, Vol.
28
, pp.
5161
68
.
3.
Dauskardt
R. H.
,
Dalgleish
B. J.
,
Yao
D.
,
Ritchie
R. O.
, and
Becher
P. F.
,
1993
, “
Cyclic Fatigue-Crack Propagation in a Silicon Carbide Whisker-Reinforced Alumina Composite: Role of Load Ratio
,”
J. Mat. Sci.
, Vol.
28
, pp.
3258
66
.
4.
Dauskardt, R. H., Kook, S.-Y., Kirtikar, A., and Ohashi, K. L., 1997, “Adhesion and Progressive Delamination of Polymer/Metal Interfaces,” in High Cycle Fatigue of Structural Materials, T. S. Srivatsan and W. O. Soboyejo, eds., Proc. of the Paul C. Paris Symposium, TMS-ASM Publication, pp. 479–98.
5.
Dauskardt
R. H.
,
Marshall
D. B.
, and
Ritchie
R. O.
,
1990
, “
Cyclic Fatigue-Crack Propagation in Magnesia-Partially-Stabilized Zirconia Ceramics
,”
J. Am. Ceram. Soc.
, Vol.
73
, pp.
893
903
.
6.
Evans
A. G.
,
Ruhle
M.
,
Dalgleish
B. J.
, and
Charalambides
P. G.
,
1990
, “
The Fracture Energy of Bimaterial Interfaces
,”
Met. Trans.
, Vol.
21A
, pp.
2419
29
.
7.
Fleck
N. A.
,
Hutchinson
J. W.
, and
Suo
Z.
,
1991
, “
Crack Path Selection in a Brittle Adhesive Layer
,”
Int. J. Sol. Struct.
, Vol.
27
, No.
13
, pp.
1683
703
.
8.
Hertzberg, R. W., and Mason, J. A., 1986, “Fatigue,” Volume 6 of the Enc. Of Polymer Science and Engineering, 2nd ed., John Wiley and Sons, New York, pp. 378–453.
9.
Hutchinson, J. W., and Suo, Z., 1991, “Mixed Mode Cracking in Layered Materials,” Advances in Applied Mechanics, J. W. Hutchinson and T. Y. Yu, eds. Academic Press, New York, pp. 63–191.
10.
Kinloch
A. J.
, and
Shaw
S. J.
,
1981
, “
The Fracture Resistance of a Toughened Epoxy Adhesive
,”
J. Adhesion
, Vol.
12
, p.
59
59
.
11.
Lane, M., Dauskardt, R. H., Ware, R., Ma, Q., and Fujimoto, H., 1997, “Progressive Debonding of Multi-Layer Interconnect Structures,” Proc. of MRS Annual Meeting, San Francisco, CA, pp. 21–26.
12.
Liaw
P. K.
,
Hartmann
H. R.
, and
Logsdon
W. A.
,
1983
, “
A New Transducer to Monitor Fatigue Crack Propagation
,”
J. Test. Eval.
, Vol.
11
, pp.
202
207
.
13.
Ma, Q., Bumgarner, J., Fujimoto, H., Lane, M., and Dauskardt, R. H., 1997, “Adhesion Measurement of Interfaces in Multilayer Interconnect Structures,” Proc. of MRS Annual Meeting, San Francisco, CA, pp. 3–14.
14.
Ma, Q., Fujimoto, H., Flinn, P., Jain, V., Adibi-Rizi, F., and Dauskardt, R. H., 1995, “Quantitative Measurement of Interface Fracture Energy in Multi-Layer Thin Film Structures,” Proc. of MRS Annual Meeting, San Francisco, CA, pp. 91–96.
15.
Ozdil
F.
, and
Carlsson
L. A.
,
1992
, “
Plastic Zone Estimates in Mode I Inter-laminar Fracture of Interleaved Composites
,”
Eng. Fract. Mech.
, Vol.
41
, No.
5
, pp.
645
658
.
16.
Paris
P. C.
, and
Erdogan
F.
,
1963
, “
A Critical Analysis of Crack Propagation Law
,”
J. Basic Eng., ASME
, Vol.
85
, pp.
528
534
.
17.
Penado
F. E.
,
1993
, “
A Closed Form Solution for the Energy Release Rate of the Double Cantilever Beam Specimen with an Adhesive Layer
,”
J. Comp. Mat.
, Vol.
27
, No.
4
, pp.
383
407
.
18.
Ritchic
R. O.
,
1979
, “
Near-Threshold Fatigue Crack Propagation in Steels
,”
Int. Met. Rev.
, Vol.
20
, pp.
205
205
.
19.
Shih
C. F.
,
1991
, “
Cracks on Bimaterial Interfaces: Elasticity and Plasticity Aspects
,”
Mat. Sci. Eng.
, Vol.
A143
, pp.
77
90
.
20.
Suo
Z.
, and
Hutchinson
J. W.
,
1989
, “
Sandwich Test Specimens for Measuring Interface Crack Toughness
,”
Mat. Sci. Eng.
, Vol.
A107
, pp.
135
143
.
21.
Suresh, S., 1991, Fatigue of Materials, Cambridge University Press, Cambridge, U.K.
This content is only available via PDF.
You do not currently have access to this content.