Microchannel heat sink on one hand enjoys benefits of intensified several folds heat transfer performance but on the other hand has to suffer aggravated form of trifling limitations associated with imperfect hydrodynamics and heat transfer behavior. Flow maldistribution is one of such limitation that exaggerates temperature nonuniformity across parallel microchannels leading to increase in maximum base temperature. Recently, variable width channels approach had been proposed by the current authors to mitigate the flow maldistribution in parallel microchannels heat sinks (MCHS), and in the current numerical study, variable height approach is opted for flow maldistribution mitigation. It is found that variable height microchannels heat sinks (VHMCHS) approach mitigates flow maldistribution rapidly in comparison to variable width microchannels heat sinks (VWMCHS) approach, almost 50% computational time can be saved by VHMCHS approach. Average fluid–solid interface temperature fluctuation across parallel microchannels reduces 3.3 °C by VHMCHS in comparison to VWMCHS approach. The maximum and average temperatures of the base of the heat sink are further reduced by 5.1 °C and 2.7 °C, respectively, for the VHMCHS. It is found that overall heat transfer performance of the heat sink improves further by 3.8% and 5.1% for the VWMCHS and VHMCHS, respectively. The pressure drop penalty of the VHMCHS is found to be 7.2% higher than VWMCHS.

References

1.
Intel, 2015, “
2015 Annual Report
,” Intel Corporation, Santa Clara, CA, accessed Mar. 23, 2019, https://s21.q4cdn.com/600692695/files/doc_financials/2015/annual/2015_Intel_Annual_Report_web.pdf
2.
Pearson
,
M. R.
, and
Lents
,
C. E.
,
2016
, “
Optimization of a Thermoelectric Cooler for Time-Varying Heat Load and Sink Temperature
,”
ASME J. Electron. Packag.
,
138
(
4
), p.
041010
.
3.
Shenoy
,
S.
,
Tullius
,
J. F.
, and
Bayazitoglu
,
Y.
,
2011
, “
Minichannels With Carbon Nanotube Structured Surfaces for Cooling Applications
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5379
5385
.
4.
Jahani
,
K.
,
Mohammadi
,
M.
,
Shafii
,
M. B.
, and
Shiee
,
Z.
,
2013
, “
Promising Technology for Electronic Cooling: Nanofluidic Micro Pulsating Heat Pipes
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021005
.
5.
Chen
,
X.
,
Ye
,
H.
,
Fan
,
X.
,
Ren
,
T.
, and
Zhang
,
G.
,
2016
, “
A Review of Small Heat Pipes for Electronics
,”
Appl. Therm. Eng.
,
96
(
5
), pp.
1
17
.
6.
Isaacs
,
S. A.
,
Arias
,
D. A.
,
Hengeveld
,
D.
, and
Hamlington
,
P. E.
,
2017
, “
Experimental Development and Computational Optimization of Flat Heat Pipes for CubeSat Applications
,”
ASME J. Electron. Packag
,
139
(
2
), p.
020910
.
7.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Rajesh
,
S.
, and
Wongwises
,
S.
,
2018
, “
Thermal Management of Electronic Devices Using Combined Effects of Nanoparticle Coating and Graphene–Water Nanofluid in a Miniature Loop Heat Pipe
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
8
(
7
), pp.
1241
1253
.
8.
Oliveira
,
P. A.
, and
Barbosa
,
J. R.
, Jr.
,
2017
, “
Performance Assessment of Single and Multiple Jet Impingement Configurations in a Refrigeration-Based Compact Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
139
(
3
), p.
031005
.
9.
Leena
,
R.
,
Syamkumar
,
G.
, and
Prakash
,
M. J.
,
2018
, “
Experimental and Numerical Analyses of Multiple Jets Impingement Cooling for High-Power Electronics
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
8
(
2
), pp.
210
215
.
10.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.
11.
Kandlikar
,
S. G.
,
2012
, “
History, Advances and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.
12.
Kadam
,
S. T.
, and
Kumar
,
R.
,
2014
, “
Twenty First Century Cooling Solution: Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
85
, pp.
73
92
.
13.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2015
, “
Pool Boiling and Flow Boiling on Micro- and Nano Structured Surfaces
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
45
73
.
14.
Narain
,
A.
,
Prasad
,
H. R.
, and
Koca
,
A.
,
2016
, “
Internal Annular Flow-Boiling and Flow-Condensation: Context, Results and Recommendations
,”
Handbook of Thermal Science and Engineering
,
Springer International Publishing
,
Cham, Switzerland
, Chap. 51-1.
15.
Mikielewicz
,
D.
,
Andrzejczyk
,
R.
,
Jakubowska
,
B.
, and
Mikielewicz
,
J.
,
2016
, “
Analytical Model With Nonadiabatic Effects for Pressure Drop and Heat Transfer During Boiling and Condensation Flows in Conventional Channels and Minichannels
,”
Heat Transfer Eng.
,
37
(
13–14
), pp.
1158
1171
.
16.
Lee
,
H.
,
Agonafer
,
D. D.
,
Won
,
Y.
,
Houshmand
,
F.
,
Gorle
,
C.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2016
, “
Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010907
.
17.
Ansari
,
D.
, and
Kim
,
K. Y.
,
2016
, “
Double-Layer Microchannel Heat Sinks With Transverse-Flow Configurations
,”
ASME J. Electron. Packag.
,
138
(
3
), p.
031005
.
18.
Maganti
,
L. S.
,
Dhar
,
P.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2016
, “
Thermally “Smart” Characteristics of Nanofluids in Parallel Microchannel Systems to Mitigate Hot Spots in MEMS
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
12
), pp.
1834
1846
.
19.
Ghani
,
I. A.
,
Sidik
,
N. A.
, and
Kamaruzaman
,
N.
,
2017
, “
Hydrothermal Performance of Microchannel Heat Sink: The Effect of Channel Design
,”
Int. J. Heat Mass Transfer
,
107
, pp.
21
44
.
20.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.
21.
Huang
,
H.
,
Lamaison
,
N.
, and
Thome
,
J. R.
,
2017
, “
Transient Data Processing of Flow Boiling Local Heat Transfer in a Multi-Microchannel Evaporator Under a Heat Flux Disturbance
,”
ASME J. Electron. Packag.
,
139
(
1
), p.
011005
.
22.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
23.
Keyes
,
R. W.
,
1975
, “
Physical Limits in Digital Electronics
,”
Proc. IEEE
,
63
(
5
), pp.
740
767
.
24.
Mihai
,
I.
,
2011
, “
Heat Transfer in Minichannels and Microchannels CPU Cooling Systems
,”
Heat Transfer—Theoretical Analysis, Experimental Investigations and Industrial Systems
,
InTech
, London, Chap. 4.
25.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sink: Theory, Application and Limitation
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041002
.
26.
Missaggia
,
L. J.
,
Walpole
,
J. N.
,
Liau
,
Z. L.
, and
Phillips
,
R. J.
,
1989
, “
Microchannel Heat Sinks for Two-Dimensional High Power-Density Diode Laser Arrays
,”
IEEE J. Quantum Elect.
,
25
(
9
), pp.
1988
1992
.
27.
Peng
,
X. F.
,
Wang
,
B. X.
,
Peterson
,
G. P.
, and
Ma
,
H. B.
,
1995
, “
Experimental Investigation of Heat Transfer in Flat Plates With Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
38
(
1
), pp.
127
137
.
28.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1995
, “
Effect of Thermofluid and Geometrical Parameters on Convection of Liquids Through Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
38
(
4
), pp.
755
758
.
29.
Rahman
,
M. M.
,
2000
, “
Measurements of Heat Transfer in Microchannel Heat Sinks
,”
Int. Comm. Heat Mass Transfer
,
27
(
4
), pp.
495
507
.
30.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
.
31.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
,
2001
, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Package. Technol.
,
24
(
1
), pp.
16
23
.
32.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
,
126
(
2
), pp.
213
224
.
33.
Lee
,
S.
,
Devahdhanush
,
V. S.
, and
Mudawar
,
I.
,
2018
, “
Investigation of Subcooled and Saturated Boiling Heat Transfer Mechanisms, Instabilities, and Transient Flow Regime Maps for Large Length-to-Diameter Ratio Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
123
, pp.
172
191
.
34.
Saenen
,
T.
, and
Thome
,
J. R.
,
2016
, “
Dynamic Numerical Microchannel Evaporator Model to Investigate Parallel Channel Instabilities
,”
ASME J. Electron, Packag.
,
138
(
1
), p.
010901
.
35.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2045
2059
.
36.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
101
107
.
37.
Kumar
,
R.
, and
Kadam
,
S. T.
,
2016
, “
Development of New Critical Heat Flux Correlation for Microchannel Using Energy-Based Bubble Growth Model
,”
ASME J. Heat Transfer
,
138
(
6
), p.
061502
.
38.
Lee
,
P. C.
,
Tseng
,
F. G.
, and
Pan
,
C.
,
2004
, “
Bubble Dynamics in Microchannels—Part I: Single Microchannel
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5575
5589
.
39.
Qu
,
W.
,
Yoon
,
S. M.
, and
Mudawar
,
I.
,
2004
, “
Two-Phase Flow and Heat Transfer in Rectangular Micro-Channels
,”
ASME J. Electron. Packag.
,
126
(
3
), pp.
288
300
.
40.
Zhuan
,
R.
, and
Wang
,
Z.
,
2012
, “
Flow Pattern of Boiling in Micro-Channel by Numerical Simulation
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1741
1753
.
41.
Tibirica
,
C. B.
, and
Ribatski
,
G.
,
2014
, “
Flow Patterns and Bubble Departure Fundamental Characteristics During Flow Boiling in Microscale Channels
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
152
165
.
42.
Kadam
,
S. T.
,
Baghel
,
K.
, and
Kumar
,
R.
,
2014
, “
Simplified Model for Prediction of Bubble Growth at Nucleation Site in Microchannels
,”
ASME J. Heat Transfer
,
136
(
6
), p.
061502
.
43.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
389
396
.
44.
Prajapati
,
Y. K.
, and
Bhandari
,
P.
,
2017
, “
Flow Boiling Instabilities in Microchannels and Their Promising Solutions—A Review
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
576
593
.
45.
Yadav
,
V.
,
Kumar
,
R.
, and
Narain
,
A.
,
2018
, “
Mitigation of Flow Maldistribution in Parallel Microchannel Heat Sink
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
2
), pp.
247
261
.
46.
Kumar
,
R.
,
Singh
,
G.
, and
Mikielewicz
,
D.
,
2018
, “
A New Approach for the Mitigating of Flow Maldistribution in Parallel Microchannel Heat Sink
,”
ASME J. Heat Transfer
,
140
(
7
), p.
072401
.
47.
Lu
,
M. C.
, and
Wang
,
C. C.
,
2006
, “
Effect of Inlet Location on the Performance of Parallel-Channel Cold Plate
,”
IEEE Trans. Compon. Package. Technol.
,
29
(1), pp.
30
38
.
48.
Chein
,
R.
, and
Chen
,
J.
,
2009
, “
Numerical Study of the Inlet/Outlet Arrangement Effect on Microchannel Heat Sink Performance
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1627
1638
.
49.
Minqiang
,
P.
,
Dehvai
,
Z.
,
Yong
,
T.
, and
Dongqing
,
C.
,
2009
, “
CFD Based Study of Velocity Distribution Among Multiple Parallel Microchannels
,”
J. Comput.
,
4
(
11
), pp.
1133
1138
.
50.
Cho
,
E. S.
,
Choi
,
J. W.
,
Yoon
,
J. S.
, and
Kim
,
M. S.
,
2010
, “
Experimental Study on Microchannel Heat Sinks Considering Mass Flow Distribution With Non-Uniform Heat Flux Conditions
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2159
2168
.
51.
Agrawal
,
G.
,
Kaisare
,
S.
,
Pushpavanam
,
S.
, and
Ramanathan
,
K.
,
2012
, “
Modeling the Effect of Flow Maldistribution on the Performance of a Catalytic Converter
,”
Chem. Eng. Sci.
,
71
, pp.
310
320
.
52.
Kumaran
,
R. M.
,
Kumaraguruparan
,
G.
, and
Sornakumar
,
T.
,
2013
, “
Experimental and Numerical Studies of Header Design and Inlet/Outlet Configurations on Flow Mal-Distribution in Parallel Micro-Channels
,”
Appl. Therm. Eng.
,
58
, pp.
205
216
.
53.
Siva
,
V. M.
,
Pattamatta
,
A.
, and
Das
,
S. K.
,
2014
, “
Investigation on Flow Maldistribution in Parallel Microchannel Systems for Integrated Microelectronic Device Cooling
,”
IEEE Trans. Compon. Package. Technol.
,
4
(
3
), pp.
438
450
.
54.
Xia
,
G. D.
,
Jiang
,
J.
,
Wang
,
J.
,
Zhai
,
Y. L.
, and
Ma
,
D. D.
,
2015
, “
Effects of Different Geometric Structures on Fluid Flow and Heat Transfer Performance in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
80
, pp.
439
447
.
55.
Mou
,
N.
,
Lee
,
Y. J.
,
Lee
,
P. S.
,
Singh
,
P. K.
, and
Khan
,
S. A.
,
2016
, “
Investigations on the Influence of Flow Migration on Flow and Heat Transfer in Oblique Fin Microchannel Array
,”
ASME J. Heat Transfer
,
138
(
10
), p.
102403
.
56.
Dabrowski
,
P.
,
Klugmann
,
M.
, and
Mikielewicz
,
D.
,
2017
, “
Selected Studies of Flow Maldistribution in a Minichannel Plate Heat Exchanger
,”
Arch. Thermodyn.
,
38
(
3
), pp.
135
148
.
57.
Klugmann
,
M.
,
Dabrowski
,
P.
, and
Mikielewicz
,
D.
,
2018
, “
Pressure Drop Related to Flow Maldistribution in a Model Minichannel Plate Heat Exchanger
,”
Arch. Thermodyn.
,
39
(
2
), pp.
123
146
.
58.
Kosar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluid Eng.
,
127
(
3
), pp.
419
430
.
59.
Deng
,
D.
,
Wan
,
W.
,
Qin
,
Y.
,
Zhang
,
J.
, and
Chu
,
X.
,
2017
, “
Flow Boiling Enhancement of Structured Microchannels With Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
105
, pp.
338
349
.
60.
Pramuditya
,
S.
,
2011
, “
Water Thermodynamic Properties
,” Bandung, Indonesia, accessed Jan. 6, 2018, https://syeilendrapramuditya.wordpress.com/2011/08/20/water-thermodynamic-properties/
61.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
62.
Shah
,
R. K.
, and
London
,
A. K.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
63.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.
64.
Biswal
,
L.
,
Chakraborty
,
S.
, and
Som
,
S. K.
,
2009
, “
Design and Optimization of Single-Phase Liquid Cooled Microchannel Heat Sink
,”
IEEE Trans. Compon. Package. Technol.
,
32
(
4
), pp.
876
886
.
65.
Lorenzini
,
G. D.
, and
Kandlikar
,
S. G.
,
2014
, “
Variable Fin Density Flow Channels for Effective Cooling and Mitigation of Temperature Nonuniformity in Three-Dimensional Integrated Circuits
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021007
.
You do not currently have access to this content.