Abstract

With the explosion in digital traffic, the number of data centers as well as demands on each data center, continue to increase. Concomitantly, the cost (and environmental impact) of energy expended in the thermal management of these data centers is of concern to operators in particular, and society in general. In the absence of physics-based control algorithms, computer room air conditioning (CRAC) units are typically operated through conservatively predetermined set points, resulting in suboptimal energy consumption. For a more optimal control algorithm, predictive capabilities are needed. In this paper, we develop a data-informed, experimentally validated and computationally inexpensive system level predictive tool that can forecast data center behavior for a broad range of operating conditions. We have tested this model on experiments as well as on (experimentally) validated transient computational fluid dynamics (CFD) simulations for two different data center design configurations. The validated model can accurately forecast temperatures and air flows in a data center (including the rack air temperatures) for 10–15 min into the future. Once integrated with control aspects, we expect that this model can form an important building block in a future intelligent, increasingly automated data center environment management systems.

References

1.
Sparkes
,
M.
,
2017
, “
Extreme Heat Causes Internet Blackout in Australia
,”
The Telegraph, Technology News
, UK.https://www.telegraph.co.uk/technology/news/11327315/Extreme-heat-causes-internet-blackout-in-Australia.html
2.
Jones
,
P.
,
2013
, “
Overheating Brings Down Microsoft Data Center
,”
Datacenter Dynamics
, London.https://www.datacenterdynamics.com/en/news/overheating-brings-down-microsoft-data-center/
3.
Miller
,
R.
,
2010
, “
Wikipedia's Data Center Overheats
,”
Data Center Knowledge
, West Chester Township, OH.https://www.datacenterknowledge.com/archives/2010/03/25/downtime-for-wikipedia-as-data-center-overheats
4.
Fulpagare
,
Y.
, and
Bhargav
,
A.
,
2015
, “
Advances in Data Center Thermal Management
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
981
996
.10.1016/j.rser.2014.11.056
5.
Tian
,
W.
,
VanGilder
,
J.
,
Condor
,
M.
,
Han
,
X.
, and
Zuo
,
W.
,
2019
, “
An Accurate Fast Fluid Dynamics Model for Data Center Applications
,”
18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, May 28–31, pp.
1275
1281
.10.1109/ITHERM.2019.8757336
6.
Moore
,
J.
,
Chase
,
J. S.
, and
Ranganathan
,
P.
,
2006
, “
Weatherman: Automated, Online and Predictive Thermal Mapping and Management for Data Centers
,”
2006 IEEE International Conference on Autonomic Computing
, Dublin, Ireland, June 12–16, pp. 155–164.10.1109/ICAC.2006.1662394
7.
Heath
,
T.
,
Centeno
,
A. P.
,
George
,
P.
,
Ramos
,
L.
,
Jaluria
,
Y.
, and
Bianchini
,
R.
,
2006
, “
Mercury and Freon: Temperature Emulation and Management for Server Systems
,”
Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems
, San Jose, CA, Oct. 21–25, pp.
106
116
.https://people.cs.pitt.edu/~kirk/cs3150spring2010/p106-heath.pdf
8.
Tang
,
Q.
,
Gupta
,
S. K. S.
, and
Varsamopoulos
,
G.
,
2008
, “
Energy-Efficient Thermal Aware Task Scheduling for Homogeneous High-Performance Computing Data Centers: A Cyber Physical Approach
,”
IEEE Trans. Parallel Distributed Syst.
, 19(11), pp.
1458
1472
.10.1109/TPDS.2008.111
9.
Choi
,
J.
,
Kim
,
Y.
,
Sivasubramaniam
,
A.
,
Srebric
,
J.
,
Wang
,
Q.
, and
Lee
,
J.
,
2007
, “
Modeling and Managing Thermal Profiles of Rack-Mounted Servers With ThermoStat
,”
Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture
, Scottsdale, AZ, Feb. 10–14, pp.
205
215
.10.1109/HPCA.2007.346198
10.
Li
,
L.
,
Liang
,
C.-J. M.
,
Liu
,
J.
,
Nath
,
S.
,
Terzis
,
A.
, and
Faloutsos
,
C.
,
2011
, “
ThermoCast: A Cyber-Physical Forecasting Model for Data Centers Categories and Subject Descriptors
,”
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, San Diego, CA, Aug. 21–24, pp.
1370
1378
.10.1145/2020408.2020611
11.
Varsamopoulos
,
G.
,
Jonas
,
M.
,
Ferguson
,
J.
,
Banerjee
,
J.
, and
Gupta
,
S. K. S.
,
2013
, “
Using Transient Thermal Models to Predict Cyberphysical Phenomena in Data Centers
,”
Sustain. Comput. Inf. Syst.
,
3
(
3
), pp.
132
147
.10.1016/j.suscom.2013.01.008
12.
Erden
,
H. S.
,
Khalifa
,
H. E.
, and
Schmidt
,
R. R.
,
2014
, “
A Hybrid Lumped Capacitance-CFD Model for the Simulation of Data Center Transients
,”
HVAC R Res.
,
20
(
6
), pp.
688
702
.10.1080/10789669.2014.930280
13.
Chen
,
J.
,
Tan
,
R.
,
Wang
,
Y.
,
Xing
,
G.
,
Wang
,
X.
,
Wang
,
X.
,
Punch
,
B.
, and
Colbry
,
D.
,
2012
, “
A High-Fidelity Temperature Distribution Forecasting System for Data Centers
,”
IEEE 33rd Real-Time Systems Symposium
, San Juan, Puerto Rico, Dec. 4–7, pp.
215
224
.10.1109/RTSS.2012.73
14.
Samadiani
,
E.
, and
Joshi
,
Y.
,
2010
, “
Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071402
.10.1115/1.4000978
15.
Samadiani
,
E.
, and
Joshi
,
Y.
,
2010
, “
Reduced Order Thermal Modeling of Data Centers Via Proper Orthogonal Decomposition: A Review
,”
Int. J. Numer. Methods Heat Fluid Flow
,
20
(
5
), pp.
529
550
.10.1108/09615531011048231
16.
Song
,
Z.
,
Murray
,
B. T.
, and
Sammakia
,
B.
,
2014
, “
Long-Term Transient Thermal Analysis Using Compact Models for Data Center Applications
,”
Int. J. Heat Mass Transfer
,
71
, pp.
69
78
.10.1016/j.ijheatmasstransfer.2013.12.007
17.
Moore
,
J.
,
Chase
,
J.
, and
Ranganathan
,
P.
,
2006
, “
ConSil: Low-Cost Thermal Mapping of Data Centers
,”
The First Workshop on Tackling Computer Systems Problems With Machine Learning (SysML)
, Saint-Malo, France, June 27.https://pdfs.semanticscholar.org/b97e/f52a9685ab898cccaf0d52f5f8f9e2967001.pdf
18.
Athavale
,
J.
,
Yoda
,
M.
, and
Joshi
,
Y.
,
2019
, “
Comparison of Data Driven Modeling Approaches for Temperature Prediction in Data Centers
,”
Int. J. Heat Mass Transfer
,
135
, pp.
1039
1052
.10.1016/j.ijheatmasstransfer.2019.02.041
19.
Song
,
Z.
,
Murray
,
B. T.
, and
Sammakia
,
B.
,
2014
, “
Numerical Investigation of Inter-Zonal Boundary Conditions for Data Center Thermal Analysis
,”
Int. J. Heat Mass Transfer
,
68
, pp.
649
658
.10.1016/j.ijheatmasstransfer.2013.09.073
20.
Lloyd
,
R.
, and
Rebow
,
M.
,
2018
, “
Data Driven Prediction Model (DDPM) for Server Inlet Temperature Prediction in Raised-Floor Data Centers
,”
Proceedings of 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 29–June 1, pp.
716
725
.10.1109/ITHERM.2018.8419650
21.
Fulpagare
,
Y.
,
Joshi
,
Y.
, and
Bhargav
,
A.
,
2018
, “
Rack Level Transient CFD Modeling of Data Center
,”
Int. J. Numer. Methods Heat Fluid Flow
, 28(2), pp. 381–394.10.1108/HFF-10-2016-0426
22.
Fulpagare
,
Y.
,
Bhargav
,
A.
, and
Joshi
,
Y.
,
2019
, “
Dynamic Thermal Characterization of Raised Floor Plenum Data Centers: Experiments and CFD
,”
J. Build. Eng.
,
25
, p.
100783
.10.1016/j.jobe.2019.100783
23.
O'Neal
,
J.
,
1972
, “
Introduction to Signal Transmission
,”
IEEE Trans. Commun.
,
20
(
5
), pp.
1046
1047
.10.1109/TCOM.1972.1091274
24.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
, 2nd ed.,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
25.
Hoerl
,
A. E.
, and
Kennard
,
R. W.
,
1970
, “
Ridge Regression: Biased Estimation for Nonorthogonal Problems
,”
Technometrics
,
12
(
1
), pp.
55
67
.10.1080/00401706.1970.10488634
26.
Stuart
,
A.
,
Ord
,
K.
, and
Arnold
,
S.
,
2009
,
Kendall's Advanced Theory of Statistics: Classical Inference and the Linear Model
, 6th ed.,
John Wiley & Sons, Inc., Hoboken, NJ.
27.
Fulpagare
,
Y.
,
Joshi
,
Y.
, and
Bhargav
,
A.
,
2017
, “
Rack Level Forecasting Model of Data Center
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), May 30–June 2, pp. 824–829.10.1109/ITHERM.2017.7992571
28.
Nelson
,
G.
,
2007
, “
Development of an Experimentally-Validated Compact Model of a Server Rack
,” Master thesis, Georgia Institute of Technology, Atlanta, GA.
29.
Arghode
,
V. K.
,
Kumar
,
P.
,
Joshi
,
Y.
,
Weiss
,
T.
, and
Meyer
,
G.
,
2013
, “
Rack Level Modeling of Air Flow Through Perforated Tile in a Data Center
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
030902
.10.1115/1.4024994
30.
Erden
,
H. S.
,
2013
, “
Experimental and Analytical Investigation of the Transient Thermal Response of Air Cooled Data Centers
,”
Ph.D. thesis
, Syracuse University, Syracuse, New York.https://www.researchgate.net/publication/276420915_Experimental_and_Analytical_Investigation_of_the_Transient_Thermal_Response_of_Air_Cooled_Data_Centers
You do not currently have access to this content.