Abstract

In this work, we present the design method of diffractive beam splitters via two comparative technical routes, the first referred as the direct scheme and the second referred as the indirect scheme. Comparative study is carried on the design procedures and results. The advantages of the direct design scheme include overcoming the limit on the number of phase pixels and being capable of realizing beam shaping and splitting simultaneously. Numerical simulation shows that the uniformity of spots array pattern in the direct design is close to that of the indirect design. These results are helpful for the design and application of diffractive optical elements (DOEs) in modern optical devices.

References

1.
Ruffato
,
G.
,
Massari
,
M.
,
Parisi
,
G.
, and
Romanato
,
F.
,
2017
, “
Test of Mode-Division Multiplexing and Demultiplexing in Free-Space With Diffractive Transformation Optics
,”
Opt. Express
,
25
(
7
), p.
7859
.10.1364/OE.25.007859
2.
Barlev
,
O.
, and
Golub
,
M. A.
,
2018
, “
Multifunctional Binary Diffractive Optical Elements for Structured Light Projectors
,”
Opt. Express
,
26
(
16
), p.
21092
.10.1364/OE.26.021092
3.
Herrera-Fernandez
,
J. M.
,
Sanchez-Brea
,
L. M.
, and
Bernabeu
,
E.
,
2013
, “
Near-Field Shaping With Two Binary Diffractive Optical Elements in Tandem
,”
Opt. Commun.
,
297
(
15
), pp.
182
189
.10.1016/j.optcom.2013.01.059
4.
Sun
,
J. H.
,
Liu
,
T. K.
,
Fang
,
Y. C.
,
Tsai
,
C. M.
, and
Lin
,
H. C.
,
2010
, “
Optimization of 350× Optical Zoom Lens With Diffractive Optical Element
,”
Optik
,
121
(
21
), pp.
1912
1918
.10.1016/j.ijleo.2009.05.031
5.
Caley
,
A. J.
,
Thomson
,
M. J.
,
Liu
,
J. S.
,
Waddie
,
A. J.
, and
Taghizadeh
,
M. R.
,
2007
, “
Diffractive Optical Elements for High Gain Lasers With Arbitrary Output Beam Profiles
,”
Opt. Express
,
15
(
17
), p.
10699
.10.1364/OE.15.010699
6.
Bühling
,
S.
, and
Wyrowski
,
F.
,
2002
, “
Arbitrary Spot Location Diffractive Beam-Splitting Elements
,”
J. Opt. Soc. Am. A
,
19
(
12
), p.
2414
.10.1364/JOSAA.19.002414
7.
Hermerschmidt
,
A.
,
Krüger
,
S.
, and
Wernicke
,
G.
,
2007
, “
Binary Diffractive Beam Splitters With Arbitrary Diffraction Angles
,”
Opt. Lett.
,
32
(
5
), p.
448
.10.1364/OL.32.000448
8.
Li
,
F.
,
Cheng
,
J. G.
,
Wang
,
M. Y.
,
Jin
,
X. Y.
, and
Wang
,
K. Y.
,
2018
, “
An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element
,”
Opt. Commun.
,
413
, pp.
44
47
.10.1016/j.optcom.2017.12.023
9.
Kotlyar
,
V. V.
,
Seraphimovich
,
P. G.
, and
Soifer
,
V. A.
,
1998
, “
An Iterative Algorithm for Designing Diffractive Optical Elements With Regularization
,”
Opt. Lasers Eng.
,
29
(
4–5
), pp.
261
268
.10.1016/S0143-8166(97)00114-0
10.
Wyrowski
,
F.
,
1990
, “
Diffractive Optical Elements: Iterative Calculation of Quantized Blazed Phase Structures
,”
J. Opt. Soc. Am. A
,
7
(
6
), p.
961
.10.1364/JOSAA.7.000961
11.
Birch
,
P.
,
Young
,
R.
,
Farsari
,
M.
,
Chatwin
,
C.
, and
Budgett
,
D.
,
2000
, “
A Comparison of the Iterative Fourier Transform Method and Evolutionary Algorithms for the Design of Diffractive Optical Elements
,”
Opt. Commun.
,
33
(
6
), pp.
439
448
.10.1016/S0143-8166(00)00044-0
12.
Elschner
,
J.
, and
Schmidt
,
G.
,
1998
, “
Numerical Solution of Optimal Design Problems for Binary Gratings
,”
J. Comput. Phys
,
146
(
2
), pp.
603
626
.10.1006/jcph.1998.6071
13.
Bao
,
G.
,
Li
,
P.
, and
Wu
,
H.
,
2012
, “
A Computational Inverse Diffraction Grating Problem
,”
J. Opt. Soc. Am. A
,
29
(
4
), pp.
394
399
.10.1364/JOSAA.29.000394
14.
Pang
,
H.
,
Yin
,
S. Y.
,
Deng
,
Q. L.
,
Qiu
,
Q.
, and
Du
,
C. L.
,
2015
, “
A Novel Method for the Design of Diffractive Optical Elements Based on the Rayleigh-Sommerfeld Integral
,”
Opt. Lasers Eng.
,
70
, pp.
38
44
.10.1016/j.optlaseng.2015.02.007
15.
Ripoil
,
O.
,
Kettunen
,
V.
, and
Herzig
,
H. P.
,
2004
, “
Review of Iterative Fourier-Transform Algorithms for Beam Shaping Applications
,”
Opt. Eng.
,
43
(
11
), pp.
2549
2556
.10.1117/1.1804543
16.
Bühling
,
S.
, and
Wyrowski
,
F.
,
2002
, “
Improved Transmission Design Algorithms by Utilizing Variable Strength Projections
,”
J. Mod. Opt.
,
49
(
11
), pp.
1871
1892
.10.1080/09500340210140551
17.
Lee
,
H.
,
Yang
,
B.
, and
Lee
,
B.
,
2004
, “
Iterative Fourier Transform Algorithm With Regulation for the Optimal Design of Diffractive Optical Elements
,”
J. Opt. Soc. Am. A
,
21
(
12
), p.
2353
.10.1364/JOSAA.21.002353
18.
Goodman
,
J. W.
,
2004
,
Introduction to Fourier Optics
, 3rd ed.,
McGraw-Hill
, New York.
You do not currently have access to this content.