Abstract

The semiconductor packaging technologies have seen its growth from multichip module (MCM), system in package (SiP), system on chip (SoC) to the heterogeneous integration of the MCM. Thermal management of multichip vertically integrated systems poses additional constraints and limitations beyond those for single chip modules. Three-dimensional-integrated circuits (3D ICs) technology is a potential approach for next-generation semiconductor packaging technologies. A 3D IC is formed by vertical interconnection of multiple substrates containing active devices which offer reduced die footprint and interconnect length. This paper discusses the optimal arrangement of two hotspots on each layer of a two-die stacked 3D IC. An analytical heat transfer model for prediction of three-dimensional temperature field of a 3D IC based on the solution of governing energy equations has been developed and used for this study. The model is subject to adiabatic boundary conditions at the walls except for the bottom wall which is subject to convective boundary condition. A feed-forward back propagation artificial neural network (ANN) is employed for obtaining the functional relationship between the location of the hotspots and the objectives. Genetic algorithm is employed for solving two nonconflicting objective functions subject to set of constraints. The first objective aims to minimize the maximum temperature on both layers, and the second objective aims to achieve temperature uniformity in the layers. The results of the optimization study are expected to provide recommendations on the design guidelines for arranging hotspots on vertically stacked substrates.

References

1.
Pangracious
,
V.
,
Marrakchi
,
Z.
, and
Mehrez
,
H.
,
2015
,
Three-Dimensional Design Methodologies for Tree-Based FPGA Architecture
,
Springer International Publishing
, Basel,
Switzerland
.
2.
Kleiner
,
M. B.
,
Kuhn
,
S. A.
,
Ramm
,
P.
, and
Weber
,
W.
,
1995
, “
Thermal Analysis of Vertically Integrated Circuits
,”
Proceedings of International Electron Devices Meeting
, Washington, DC, Dec. 10–13, pp.
487
490
.10.1109/IEDM.1995.499244
3.
Sienski
,
K.
,
Eden
,
R.
, and
Schaefer
,
D.
,
1996
, “
3D Electronic Interconnect Packaging
,” Proceedings on
IEEE Aerospace Applications Conference
, Vol.
1
, Aspen, CO, Feb. 10, pp.
363
373
.10.1109/AERO.1996.496050
4.
Souri
,
S. J.
, and
Saraswat
,
K. C.
,
2001
, “
Thermal Analysis of Heterogeneous 3D ICs With Various Integration Scenarios
,”
International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224)
, Washington, DC, Dec. 2–5, pp.
31.2.1
31.2.4
.10.1109/IEDM.2001.979599
5.
Geer
,
J.
,
Desai
,
A.
, and
Sammakia
,
B.
,
2007
, “
Heat Conduction in Multilayered Rectangular Domains
,”
ASME J. Electron. Packag.
,
129
(
4
), pp.
440
451
.10.1115/1.2804094
6.
Goplen
,
B.
, and
Sapatnekar
,
S.
,
2005
, “
Thermal Via Placement in 3D ICs
,”
Proceedings of the International Symposium on Physical Design, ACM
, San Francisco, CA, Apr. 3–6, pp.
167
174
.http://www2.ece.umn.edu/users/sachin/conf/ispd05bg.pdf
7.
Choobineh
,
L.
, and
Jain
,
A.
,
2013
, “
Determination of Temperature Distribution in Three-Dimensional Integrated Circuits (3D ICs) With Unequally-Sized Die
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
176
184
.10.1016/j.applthermaleng.2013.03.006
8.
Choobineh
,
L.
, and
Jain
,
A.
,
2015
, “
An Explicit Analytical Model for Rapid Computation of Temperature Field in a Three-Dimensional Integrated Circuit (3D IC)
,”
Int. J. Therm. Sci.
,
87
, pp.
103
109
.10.1016/j.ijthermalsci.2014.08.012
9.
Choobineh
,
L.
, and
Jain
,
A.
,
2012
, “
Analytical Solution for Steady-State and Transient Temperature Fields in Vertically Stacked 3D Integrated Circuits
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
2
(
12
), pp.
2031
2039
.10.1109/TCPMT.2012.2213820
10.
Choobineh
,
L.
,
Vo
,
N.
,
Uehling
,
T.
, and
Jain
,
A.
,
2013
, “
Experimental Measurement of the Thermal Performance of a Two-Die 3D Integrated Circuit (3D IC)
,”
ASME
Paper No. IPACK2013-73167.10.1115/IPACK2013-73167
11.
Jha
,
C. M.
,
Choobineh
,
L.
, and
Jain
,
A.
,
2015
, “
Microelectronics Thermal Sensing: Future Trends
,”
Thermal Sensors
,
C.
Jha
, ed.,
Springer
,
New York
.
12.
Choobineh
,
L.
,
Jones
,
J.
, and
Jain
,
A.
,
2017
, “
Experimental and Numerical Investigation of Interdie Thermal Resistance in Three-Dimensional Integrated Circuits
,”
ASME J. Electron. Packag.
,
139
(
2
), p.
020908
.10.1115/1.4036404
13.
Choobineh
,
L.
,
2014
, “
Analytical and Experimental Investigation of Thermal Transport in Three-Dimensional Integrated Circuits (3D ICs)
,”
Ph.D. dissertation
, The University of Texas at Arlington, Arlington, TX.http://hdl.handle.net/10106/24689
14.
Li
,
X. Y.
,
Ma
,
X.
, and
Hong
,
2009
, “
A Novel Thermal Optimization Flow Using Incremental Floorplanning for 3D ICs
,”
Asia and South Pacific Design Automation Conference, IEEE
, Yokohama, Japan, Jan. 19–22, pp.
347
352
.10.1109/ASPDAC.2009.4796505
15.
Jain
,
A.
,
Alam
,
S. M.
,
Pozder
,
S.
, and
Jones
,
R. E.
,
2011
, “
Thermal–Electrical Co-Optimisation of Floorplanning of Three-Dimensional Integrated Circuits Under Manufacturing and Physical Design Constraints
,”
IET Comput. Digital Tech.
,
5
(
3
), pp.
169
178
.10.1049/iet-cdt.2009.0107
16.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Networks
,
5
(
6
), pp.
989
993
.10.1109/72.329697
17.
Srikanth
,
R.
, and
Balaji
,
C.
,
2017
, “
Experimental Investigation on the Heat Transfer Performance of a PCM Based Pin Fin Heat Sink With Discrete Heating
,”
Int. J. Therm. Sci.
,
111
, pp.
188
203
.10.1016/j.ijthermalsci.2016.08.018
18.
Srikanth
,
R.
,
Nemani
,
P.
, and
Balaji
,
C.
,
2015
, “
Multi-Objective Geometric Optimization of a PCM Based Matrix Type Composite Heat Sink
,”
Appl. Energy
,
156
, pp.
703
714
.10.1016/j.apenergy.2015.07.046
19.
Srikanth
,
R.
, and
Balaji
,
C.
,
2017
, “
Heat Transfer Correlations for a Composite PCM Based 72 Pin Fin Heat Sink With Discrete Heating at the Base
,”
INAE Lett.
,
2
(
3
), pp.
65
71
.10.1007/s41403-017-0024-x
20.
Hotta
,
T. K.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2014
, “
Optimal Distribution of Discrete Heat Sources Under Mixed Convection—A Heuristic Approach
,”
ASME J. Heat Transfer
,
136
(
10
), p.
104503
.10.1115/1.4027350
21.
Gosselin
,
L.
,
Tye-Gingras
,
M.
, and
Mathieu-Potvin
,
F.
,
2009
, “
Review of Utilization of Genetic Algorithms in Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2169
2188
.10.1016/j.ijheatmasstransfer.2008.11.015
22.
Madadi
,
R. R.
, and
Balaji
,
C.
,
2008
, “
Optimization of the Location of Multiple Discrete Heat Sources in a Ventilated Cavity Using Artificial Neural Networks and Micro Genetic Algorithm
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2299
2312
.10.1016/j.ijheatmasstransfer.2007.08.033
23.
Osmolovskyi
,
S. J.
,
Knechtel
,
I. L.
,
Markov
, and
Lienig
,
J.
,
2018
, “
Optimal Die Placement for Interposer-Based 3D ICs
,” 23rd Asia and South Pacific Design Automation Conference (
ASP-DAC
), Jeju, South Korea, Jan. 22–25, pp.
513
520
.10.1109/ASPDAC.2018.8297375
24.
Kumar
,
S. V.
,
Rao
,
P. V.
, and
Singh
,
M. K.
,
2019
, “
Optimal Floor Planning in VLSI Using Improved Adaptive Particle Swarm Optimization
,”
Evol. Intell.
,
12
, pp.
1
14
.10.1007/s12065-019-00256-z
25.
Ni
,
T.
,
Chang
,
H.
,
Zhu
,
S.
,
Lu
,
L.
,
Li
,
X.
,
Xu
,
Q.
,
Liang
,
H.
, and
Huang
,
Z.
,
2019
, “
Temperature-Aware Floorplanning for Fixed-Outline 3D ICs
,”
IEEE Access
,
7
, pp.
139787
139794
.10.1109/ACCESS.2019.2942839
You do not currently have access to this content.