Abstract

Gallium nitride (GaN) has emerged as one of the most attractive base materials for next-generation high-power and high-frequency electronic devices. Recent efforts have focused on realizing vertical power device structures such as in situ oxide, GaN interlayer based vertical trench metal–oxide–semiconductor field-effect transistors (OG-FETs). Unfortunately, the higher-power density of GaN electronics inevitably leads to considerable device self-heating which impacts device performance and reliability. Halide vapor-phase epitaxy (HVPE) is currently the most common approach for manufacturing commercial GaN substrates used to build vertical GaN transistors. Vertical device structures consist of GaN layers of diverse doping levels. Hence, it is of crucial importance to measure and understand how the dopant type (Si, Fe, and Mg), doping level, and crystal quality alter the thermal conductivity of HVPE-grown bulk GaN. In this work, a steady-state thermoreflectance (SSTR) technique was used to measure the thermal conductivity of HVPE-grown GaN substrates employing different doping schemes and levels. Structural and electrical characterization methods including X-ray diffraction (XRD), secondary-ion mass spectrometry (SIMS), Raman spectroscopy, and Hall-effect measurements were used to determine and compare the GaN crystal quality, dislocation density, doping level, and carrier concentration. Using this comprehensive suite of characterization methods, the interrelation among structural/electrical parameters and the thermal conductivity of bulk GaN substrates was investigated. While doping is evidenced to reduce the GaN thermal conductivity, the highest thermal conductivity (201 W/mK) is observed in a heavily Si-doped (1–5.00 × 1018 cm−3) substrate with the highest crystalline quality. This suggests that phonon-dislocation scattering dominates over phonon-impurity scattering in the tested HVPE-grown bulk GaN substrates. The results provide useful information for designing thermal management solutions for vertical GaN power electronic devices.

References

1.
Chatterjee
,
B.
,
Kim
,
T. K.
,
Song
,
Y.
,
Lundh
,
J. S.
,
Han
,
S.
,
Shoemaker
,
D.
, and
Min
,
J.
,
2019
, “
Enhancement of the Electrical and Thermal Performance of AlGaN/GaN HEMTs Using a Novel Resistive Field Plate Structure
,” 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
362
369
.10.1109/ITHERM.2019.8757330
2.
Binari
,
S. C.
,
Klein
,
P. B.
, and
Kazior
,
T. E.
,
2002
, “
Trapping Effects in GaN and SiC Microwave FETs
,”
Proc. IEEE
,
90
(
6
), pp.
1048
1058
.10.1109/JPROC.2002.1021569
3.
Daumiller
,
I.
,
Theron
,
D.
,
Gaquière
,
C.
,
Vescan
,
A.
,
Dietrich
,
R.
,
Wieszt
,
A.
,
Leier
,
H.
,
Vetury
,
R.
,
Mishra
,
U. K.
,
Smorchkova
,
I. P.
,
Keller
,
S.
,
Nguyen
,
N. X.
,
Nguyen
,
C.
, and
Kohn
,
E.
,
2001
, “
Current Instabilities in GaN-Based Devices
,”
IEEE Electron Device Lett.
,
22
(
2
), pp.
62
64
.10.1109/55.902832
4.
Su
,
M.
,
Chen
,
C.
,
Chen
,
L.
,
Esposto
,
M.
, and
Rajan
,
S.
,
2012
, “
Challenges in the Automotive Application of GaN Power Switching Devices
,”
International Conference on Compound Semiconductor Manufacturing Technology
(
CS MANTECH
), Boston, MA, Apr.
23
26
. https://csmantech.org/OldSite/Digests/2012/papers/10a.3.077.pdf
5.
Gupta
,
C.
,
Chan
,
S. H.
,
Enatsu
,
Y.
,
Agarwal
,
A.
,
Keller
,
S.
, and
Mishra
,
U. K.
,
2016
, “
OG-FET: An in-Situ Oxide, GaN Interlayer-Based Vertical Trench MOSFET
,”
IEEE Electron Device Lett.
,
37
(
12
), pp.
1601
1604
.10.1109/LED.2016.2616508
6.
Ji
,
D.
,
Li
,
W.
, and
Chowdhury
,
S.
,
2018
, “
Switching Performance Analysis of GaN OG-FET Using TCAD Device-Circuit-Integrated Model
,”
2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs
(
ISPSD
), Chicago, IL, May 13–17, pp. 208–211.10.1109/ISPSD.2018.8393639
7.
Ji
,
D.
,
Gupta
,
C.
,
Chan
,
S. H.
,
Agarwal
,
A.
,
Li
,
W.
,
Keller
,
S.
,
Mishra
,
U. K.
, and
Chowdhury
,
S.
,
2017
, “
Demonstrating >1.4 KV OG-FET Performance With a Novel Double Field-Plated Geometry and the Successful Scaling of Large-Area Devices
,” 2017 IEEE International Electron Devices Meeting (
IEDM
), San Francisco, CA, Dec. 2–6, pp. 9.4.1–9.4.4.10.1109/IEDM.2017.8268359
8.
Oh
,
S. K.
,
Lundh
,
J. S.
,
Shervin
,
S.
,
Chatterjee
,
B.
,
Lee
,
D. K.
,
Choi
,
S.
,
Kwak
,
J. S.
, and
Ryou
,
J.-H.
,
2019
, “
Thermal Management and Characterization of High-Power Wide-Bandgap Semiconductor Electronic and Photonic Devices in Automotive Applications
,”
ASME J. Electron. Packag.
,
141
(
2
), p.
020801
.10.1115/1.4041813
9.
Lundh
,
J. S.
,
Song
,
Y.
,
Chatterjee
,
B.
,
Baca
,
A. G.
,
Kaplar
,
R. J.
,
Armstrong
,
A. M.
,
Allerman
,
A. A.
,
Kim
,
H.
, and
Choi
,
S.
,
2019
, “
Integrated Optical Probing of the Thermal Dynamics of Wide Bandgap
,”
ASME
Paper No. IPACK2019-6440.10.1115/IPACK2019-6440
10.
Mion
,
C.
,
Muth
,
J. F.
,
Preble
,
E. A.
, and
Hanser
,
D.
,
2006
, “
Accurate Dependence of Gallium Nitride Thermal Conductivity on Dislocation Density
,”
Appl. Phys. Lett.
,
89
(
9
), p.
092123
.10.1063/1.2335972
11.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
12.
Choi
,
S.
,
Heller
,
E. R.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
The Impact of Bias Conditions on Self-Heating in AlGaN/GaN HEMTs
,”
IEEE Trans. Electron Dev.
,
60
(
1
), pp.
159
162
.10.1109/TED.2012.2224115
13.
Chatterjee
,
B.
,
Lundh
,
J. S.
,
Dallas
,
J.
,
Kim
,
H.
, and
Choi
,
S.
,
2017
, “
Electro-Thermal Reliability Study of GaN High Electron Mobility Transistors
,”
2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Orlando, FL, May 30–June 2, pp. 1247–1252.10.1109/ITHERM.2017.7992627
14.
Wu
,
Y.
,
Chen
,
C. Y.
, and
Del Alamo
,
J. A.
,
2014
, “
Activation Energy of Drain-Current Degradation in GaN HEMTs Under High-Power DC Stress
,”
Microelectron. Reliab.
,
54
(
12
), pp.
2668
2674
.10.1016/j.microrel.2014.09.019
15.
Coutu
,
R. A.
,
Lake
,
R. A.
,
Christiansen
,
B. D.
,
Heller
,
E. R.
,
Bozada
,
C. A.
,
Poling
,
B. S.
,
Via
,
G. D.
,
Theimer
,
J. P.
,
Tetlak
,
S. E.
,
Vetury
,
R.
, and
Shealy
,
J. B.
,
2016
, “
Benefits of Considering More Than Temperature Acceleration for GaN HEMT Life Testing
,”
Electronics
,
5
(
3
), p. 32.https://www.mdpi.com/2079-9292/5/3/32/pdf
16.
Lee
,
S.
,
Vetury
,
R.
,
Brown
,
J. D.
,
Gibb
,
S. R.
,
Cai
,
W. Z.
,
Sun
,
J.
,
Green
,
D. S.
, and
Shealy
,
J.
,
2008
, “
Reliability Assessment of AlGaN/GaN HEMT Technology on SiC for 48V Applications
,”
2008 IEEE International Reliability Physics Symposium
, Phoenix, AZ, Apr. 27–May 1, pp. 446–449.10.1109/RELPHY.2008.4558926
17.
Bockowski
,
M.
,
2007
, “
Review: Bulk Growth of Gallium Nitride: Challenges and Difficulties
,”
Cryst. Res. Technol.,
1175
(
12
), pp.
1162
1175
.10.1002/crat.200711002
18.
Iwinska
,
M.
,
Takekawa
,
N.
,
Ivanov
,
V. Y.
,
Amilusik
,
M.
,
Kruszewski
,
P.
,
Piotrzkowski
,
R.
,
Litwin-Staszewska
,
E.
,
Lucznik
,
B.
,
Fijalkowski
,
M.
,
Sochacki
,
T.
,
Teisseyre
,
H.
,
Murakami
,
H.
, and
Bockowski
,
M.
,
2017
, “
Crystal Growth of HVPE-GaN Doped With Germanium
,”
J. Cryst. Growth
,
480
, pp.
102
107
.10.1016/j.jcrysgro.2017.10.016
19.
Beechem
,
T. E.
,
McDonald
,
A. E.
,
Fuller
,
E. J.
,
Talin
,
A. A.
,
Rost
,
C. M.
,
Maria
,
J.-P.
,
Gaskins
,
J. T.
,
Hopkins
,
P. E.
, and
Allerman
,
A. A.
,
2016
, “
Size Dictated Thermal Conductivity of GaN
,”
J. Appl. Phys.
,
120
(
9
), p.
095104
.10.1063/1.4962010
20.
Palacios
,
T.
,
Chakraborty
,
A.
,
Rajan
,
S.
,
Poblenz
,
C.
,
Keller
,
S.
,
DenBaars
,
S. P.
,
Speck
,
J. S.
, and
Mishra
,
U. K.
,
2005
, “
High-Power AlGaN/GaN HEMTs for Ka-Band Applications
,”
IEEE Electron Dev. Lett.
,
26
(
11
), pp.
781
783
.10.1109/LED.2005.857701
21.
Rajan
,
S.
,
Waltereit
,
P.
,
Poblenz
,
C.
,
Heikman
,
S. J.
,
Green
,
D. S.
,
Speck
,
J. S.
, and
Mishra
,
U. K.
,
2004
, “
Power Performance of AlGaN-GaN HEMTs Grown on SiC by Plasma-Assisted MBE
,”
IEEE Electron Dev. Lett.
,
25
(
5
), pp.
247
249
.10.1109/LED.2004.826977
22.
Look
,
D. C.
, and
Sizelove
,
J. R.
,
1999
, “
Dislocation Scattering in GaN
,”
Phys. Rev. Lett.
,
82
(
6
), pp.
1237
1240
.10.1103/PhysRevLett.82.1237
23.
Simpkins
,
B. S.
,
Yu
,
E. T.
,
Waltereit
,
P.
, and
Speck
,
J. S.
,
2003
, “
Correlated Scanning Kelvin Probe and Conductive Atomic Force Microscopy Studies of Dislocations in Gallium Nitride
,”
J. Appl. Phys.
,
94
(
3
), pp.
1448
1453
.10.1063/1.1586952
24.
Hsu
,
J. W. P.
,
Manfra
,
M. J.
,
Molnar
,
R. J.
,
Heying
,
B.
, and
Speck
,
J. S.
,
2002
, “
Direct Imaging of Reverse-Bias Leakage Through Pure Screw Dislocations in GaN Films Grown by Molecular Beam Epitaxy on GaN Templates
,”
Appl. Phys. Lett.
,
81
(
1
), pp.
79
81
.10.1063/1.1490147
25.
Zou
,
J.
,
Kotchetkov
,
D.
,
Balandin
,
A. A.
,
Florescu
,
D. I.
, and
Pollak
,
F. H.
,
2002
, “
Thermal Conductivity of GaN Films: Effects of Impurities and Dislocations
,”
J. Appl. Phys.
,
92
(
5
), pp.
2534
2539
.10.1063/1.1497704
26.
Jeżowski
,
A.
,
Stachowiak
,
P.
,
Plackowski
,
T.
,
Suski
,
T.
,
Krukowski
,
S.
,
Boćkowski
,
M.
,
Grzegory
,
I.
,
Danilchenko
,
B.
, and
Paszkiewicz
,
T.
,
2003
, “
Thermal Conductivity of GaN Crystals Grown by High Pressure Method
,”
Phys. Status Solidi
,
240
(
2
), pp.
447
450
.10.1002/pssb.200303341
27.
Kotchetkov
,
D.
,
Zou
,
J.
,
Balandin
,
A. A.
,
Florescu
,
D. I.
, and
Pollak
,
F. H.
,
2001
, “
Effect of Dislocations on Thermal Conductivity of GaN Layers
,”
Appl. Phys. Lett.
,
79
(
26
), pp.
4316
4318
.10.1063/1.1427153
28.
Kizilyalli
,
I. C.
,
Edwards
,
A. P.
,
Aktas
,
O.
,
Prunty
,
T.
, and
Bour
,
D.
,
2015
, “
Vertical Power P-n Diodes Based on Bulk GaN
,”
IEEE Trans. Electron Dev.
,
62
(
2
), pp.
414
422
.10.1109/TED.2014.2360861
29.
Witek
,
A.
,
1998
, “
Some Aspects of Thermal Conductivity of Isotopically Pure Diamond—A Comparison With Nitrides
,”
Diam. Relat. Mater.
,
7
(
7
), pp.
962
964
.10.1016/S0925-9635(97)00336-1
30.
Kamatagi
,
M. D.
,
Sankeshwar
,
N. S.
, and
Mulimani
,
B. G.
,
2007
, “
Thermal Conductivity of GaN
,”
Diam. Relat. Mater.
,
16
(
1
), pp.
98
106
.10.1016/j.diamond.2006.04.004
31.
Ziade
,
E.
,
Yang
,
J.
,
Brummer
,
G.
,
Nothern
,
D.
,
Moustakas
,
T.
, and
Schmidt
,
A. J.
,
2017
, “
Thickness Dependent Thermal Conductivity of Gallium Nitride
,”
Appl. Phys. Lett.
,
110
(
3
), p.
031903
.10.1063/1.4974321
32.
Bougher
,
T. L.
,
Yates
,
L.
,
Lo
,
C.-F.
,
Johnson
,
W.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2016
, “
Thermal Boundary Resistance in GaN Films Measured by Time Domain Thermoreflectance With Robust Monte Carlo Uncertainty Estimation
,”
Nanoscale Microscale Thermophys. Eng.
,
20
(
1
), pp.
22
32
.10.1080/15567265.2016.1154630
33.
Chatterjee
,
B.
,
Dundar
,
C.
,
Beechem
,
T. E.
,
Heller
,
E.
,
Kendig
,
D.
,
Kim
,
H.
,
Donmezer
,
N.
, and
Choi
,
S.
,
2020
, “
Nanoscale Electro-Thermal Interactions in AlGaN/GaN High Electron Mobility Transistors
,”
J. Appl. Phys.
,
127
(
4
), p.
44502
.10.1063/1.5123726
34.
Rounds
,
R.
,
Sarkar
,
B.
,
Sochacki
,
T.
,
Bockowski
,
M.
,
Imanishi
,
M.
,
Mori
,
Y.
,
Kirste
,
R.
,
Collazo
,
R.
,
Sitar
,
Z.
, and
Phys
,
J. A.
,
2018
, “
Thermal Conductivity of GaN Single Crystals: Influence of Impurities Incorporated in Different Growth Processes
,”
J. Appl. Phys.
,
124
(
10
), p.
105106
.10.1063/1.5047531
35.
Cho
,
J.
,
Li
,
Y.
,
Hoke
,
W. E.
,
Altman
,
D. H.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2014
, “
Phonon Scattering in Strained Transition Layers for GaN Heteroepitaxy
,”
Phys. Rev. B.
,
115301
, pp.
1
11
.10.1103/PhysRevB.89.115301
36.
Ziade
,
E.
,
Yang
,
J.
,
Brummer
,
G.
, and
Nothern
,
D.
,
2017
, “
Thermal Transport Through GaN – SiC Interfaces From 300 to 600 K
,”
Appl. Phys. Lett.
,
091605
, pp.
1
5
.10.1063/1.4930104
37.
Luo
,
C.-Y.
,
Marchand
,
H.
,
Clarke
,
D. R.
, and
DenBaars
,
S. P.
,
1999
, “
Thermal Conductivity of Lateral Epitaxial Overgrown GaN Films
,”
Appl. Phys. Lett.
,
75
(
26
), pp.
4151
4153
.10.1063/1.125566
38.
Braun
,
J. L.
,
Olson
,
D. H.
,
Gaskins
,
J. T.
, and
Hopkins
,
P. E.
,
2019
, “
A Steady-State Thermoreflectance Method to Measure Thermal Conductivity
,”
Rev. Sci. Instrum.
,
90
(
2
), p.
24905
.10.1063/1.5056182
39.
Schmidt
,
A. J.
,
Cheaito
,
R.
, and
Chiesa
,
M.
,
2009
, “
A Frequency-Domain Thermoreflectance Method for the Characterization of Thermal Properties
,”
Rev. Sci. Instrum.
,
80
(
9
), p.
094901
.10.1063/1.3212673
40.
Cahill
,
D. G.
,
2004
, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
75
(
12
), pp.
5119
5122
.10.1063/1.1819431
41.
Fujikura
,
H.
,
Konno
,
T.
,
Yoshida
,
T.
, and
Horikiri
,
F.
,
2017
, “
Hydride-Vapor-Phase Epitaxial Growth of Highly Pure GaN Layers With Smooth as-Grown Surfaces on Freestanding GaN Substrates
,”
Jpn. J. Appl. Phys.
,
56
(
8
), p.
085503
.10.7567/JJAP.56.085503
42.
Fleischmann
,
S.
,
Richter
,
E.
,
Mogilatenko
,
A.
,
Weyers
,
M.
, and
Tränkle
,
G.
,
2019
, “
Influence of Quartz on Silicon Incorporation in HVPE Grown AlN
,”
J. Cryst. Growth
,
507
, pp.
295
298
.10.1016/j.jcrysgro.2018.11.028
43.
Braun
,
J. L.
,
Szwejkowski
,
C. J.
,
Giri
,
A.
, and
Hopkins
,
P. E.
,
2018
, “
On the Steady-State Temperature Rise During Laser Heating of Multilayer Thin Films in Optical Pump–Probe Techniques
,”
ASME J. Heat Transfer
, 140(5), p. 052801.10.1115/1.4038713
44.
Kaganer
,
V. M.
,
Brandt
,
O.
,
Trampert
,
A.
, and
Ploog
,
K. H.
,
2005
, “
X-Ray Diffraction Peak Profiles From Threading Dislocations in GaN Epitaxial Films
,”
Phys. Rev. B
,
72
(
4
), p.
45423
.10.1103/PhysRevB.72.045423
45.
Heinke
,
H.
,
Kirchner
,
V.
,
Einfeldt
,
S.
, and
Hommel
,
D.
,
1999
, “
Analysis of the Defect Structure of Epitaxial GaN
,”
Phys. Status Solidi
,
176
(
1
), pp.
391
395
.10.1002/(SICI)1521-396X(199911)176:1<391::AID-PSSA391>3.0.CO;2-I
46.
Metzger
,
T.
,
Höpler
,
R.
,
Born
,
E.
,
Ambacher
,
O.
,
Stutzmann
,
M.
,
Stömmer
,
R.
,
Schuster
,
M.
,
Göbel
,
H.
,
Christiansen
,
S.
,
Albrecht
,
M.
, and
Strunk
,
H. P.
,
1998
, “
Defect Structure of Epitaxial GaN Films Determined by Transmission Electron Microscopy and Triple-Axis X-Ray Diffractometry
,”
Philos. Mag. A
,
77
(
4
), pp.
1013
1025
.10.1080/01418619808221225
47.
Chierchia
,
R.
,
Böttcher
,
T.
,
Heinke
,
H.
,
Einfeldt
,
S.
,
Figge
,
S.
, and
Hommel
,
D.
,
2003
, “
Microstructure of Heteroepitaxial GaN Revealed by X-Ray Diffraction
,”
J. Appl. Phys.
,
93
(
11
), pp.
8918
8925
.10.1063/1.1571217
48.
Heinke
,
H.
,
Kirchner
,
V.
,
Einfeldt
,
S.
, and
Hommel
,
D.
,
2000
, “
X-Ray Diffraction Analysis of the Defect Structure in Epitaxial GaN
,”
Appl. Phys. Lett.
,
77
(
14
), pp.
2145
2147
.10.1063/1.1314877
49.
Srikant
,
V.
,
Speck
,
J. S.
, and
Clarke
,
D. R.
,
1997
, “
Mosaic Structure in Epitaxial Thin Films Having Large Lattice Mismatch
,”
J. Appl. Phys.
,
82
(
9
), pp.
4286
4295
.10.1063/1.366235
50.
Amano
,
H.
,
Takeuchi
,
T.
,
Sakai
,
H.
,
Yamaguchi
,
S.
,
Wetzel
,
C.
, and
Akasaki
,
I.
,
1998
, “
Heteroepitaxy of Group III Nitrides for Device Applications
,”
Mater. Sci. Forum
,
264–268
, pp.
1115
1120
.10.4028/www.scientific.net/MSF.264-268.1115
51.
Kuball
,
M.
, and
Pomeroy
,
J. W.
,
2016
, “
A Review of Raman Thermography for Electronic and Opto-Electronic Device Measurement With Submicron Spatial and Nanosecond Temporal Resolution
,”
IEEE Trans. Device Mater. Reliab.
,
16
(
4
), pp.
667
684
.10.1109/TDMR.2016.2617458
52.
Bergman
,
L.
, and
Nemanich
,
R. J.
,
1996
, “
Raman Spectroscopy for Characterization of Hard, Wide-Bandgap Semiconductors: Diamond, GaN, GaAlN, AlN, BN
,”
Annu. Rev. Mater. Sci.
,
26
(
1
), pp.
551
579
.10.1146/annurev.ms.26.080196.003003
53.
Choi
,
S.
,
Heller
,
E. R.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
Thermometry of AlGaN/GaN HEMTs Using Multispectral Raman Features
,”
IEEE Trans. Electron Devices
,
60
(
6
), pp.
1898
1904
.10.1109/TED.2013.2255102
54.
Choi
,
S.
,
Heller
,
E.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
Analysis of the Residual Stress Distribution in AlGaN/GaN High Electron Mobility Transistors
,”
J. Appl. Phys.
,
113
(
9
), p.
093510
.10.1063/1.4794009
55.
Kuball
,
M.
,
2001
, “
Raman Spectroscopy of GaN, AlGaN and AlN for Process and Growth Monitoring/Control
,”
Surf. Interface Anal.
,
31
(
10
), pp.
987
999
.10.1002/sia.1134
56.
Beechem
,
T.
,
Christensen
,
A.
,
Graham
,
S.
, and
Green
,
D.
,
2008
, “
Micro-Raman Thermometry in the Presence of Complex Stresses in GaN Devices
,”
J. Appl. Phys.
,
103
(
12
), p.
124501
.10.1063/1.2940131
57.
Ponce
,
F. A.
,
Steeds
,
J. W.
,
Dyer
,
C. D.
, and
Pitt
,
G. D.
,
1996
, “
Direct Imaging of Impurity‐Induced Raman Scattering in GaN
,”
Appl. Phys. Lett.
,
69
(
18
), pp.
2650
2652
.10.1063/1.117547
58.
Huang
,
Y.
,
Chen
,
X. D.
,
Fung
,
S.
,
Beling
,
C. D.
,
Ling
,
C. C.
,
Wei
,
Z. F.
,
Xu
,
S. J.
, and
Zhi
,
C. Y.
,
2004
, “
The Depth-Profiled Carrier Concentration and Scattering Mechanism in Undoped GaN Film Grown on Sapphire
,”
J. Appl. Phys.
,
96
(
2
), pp.
1120
1126
.10.1063/1.1763235
59.
Özgür
,
Ü.
,
Gu
,
X.
,
Chevtchenko
,
S.
,
Spradlin
,
J.
,
Cho
,
S. J.
,
Morkoç
,
H.
,
Pollak
,
F. H.
,
Everitt
,
H. O.
,
Nemeth
,
B.
, and
Nause
,
J. E.
,
2006
, “
Thermal Conductivity of Bulk ZnO After Different Thermal Treatments
,”
J. Electron. Mater.
,
35
(
4
), pp.
550
555
.10.1007/s11664-006-0098-9
60.
Nagai
,
H.
,
Zhu
,
Q. S.
,
Kawaguchi
,
Y.
,
Hiramatsu
,
K.
, and
Sawaki
,
N.
,
1998
, “
Hole Trap Levels in Mg-Doped GaN Grown by Metalorganic Vapor Phase Epitaxy
,”
Appl. Phys. Lett.
,
73
(
14
), pp.
2024
2026
.10.1063/1.122356
61.
Kozodoy
,
P.
,
Xing
,
H.
,
DenBaars
,
S. P.
,
Mishra
,
U. K.
,
Saxler
,
A.
,
Perrin
,
R.
,
Elhamri
,
S.
, and
Mitchel
,
W. C.
,
2000
, “
Heavy Doping Effects in Mg-Doped GaN
,”
J. Appl. Phys.
,
87
(
4
), pp.
1832
1835
.10.1063/1.372098
62.
Simon
,
R. B.
,
Anaya
,
J.
, and
Kuball
,
M.
,
2014
, “
Thermal Conductivity of Bulk GaN—Effects of Oxygen, Magnesium Doping, and Strain Field Compensation
,”
105
(
20
), pp.
202105
202115
.
63.
Van de Walle
,
C. G.
,
2003
, “
Effects of Impurities on the Lattice Parameters of GaN
,”
Phys. Rev. B
,
68
(
16
), pp.
1
5
.10.1103/PhysRevB.68.165209
64.
Xu
,
R. L.
,
Muñoz Rojo
,
M.
,
Islam
,
S. M.
,
Sood
,
A.
,
Vareskic
,
B.
,
Katre
,
A.
,
Mingo
,
N.
,
Goodson
,
K. E.
,
Xing
,
H. G.
,
Jena
,
D.
, and
Pop
,
E.
,
2019
, “
Thermal Conductivity of Crystalline AlN and the Influence of Atomic-Scale Defects
,”
J. Appl. Phys.
,
126
(
18
), p.
185105
.10.1063/1.5097172
You do not currently have access to this content.