Abstract

In order for electronics packaging power density to increase, innovations and improvements in heat transfer are required. Electrification of transportation has the potential for significant fuel and energy savings. Changing to an electrified drive train requires reliable and efficient power electronics to provide power conversion between alternating current motors and direct current energy storage. For high power transportation systems like aircrafts or heavy vehicles, the power density of power electronics needs to be improved. Power density is also an enabler for high power military devices that must be used and transported via air, ground, and sea. This paper summarizes the outcome of a collaborative and multidisciplinary research effort aimed at co-designing a novel electronics cooling device that utilizes two-phase fluid flow. Two-phase flow cooling has been known for decades as well as the risks associated with it: critical heat flux (CHF), dry-out, and thermal runaway. Our research de-risks the two-phase cooling technology by swirling the flow to remove the bubbles from the wall and confining them at the core of the cooler. The combined effects of gas phase removal, enhanced nucleation, and dramatic liquid film agitation and rupture have been quantified by our experiments: double the heat transfer coefficient with only 13% increase in pressure drop. Besides advanced fluid-dynamics, our Package-Integrated Cyclone Cooler (PICCO) utilizes cutting edge packaging and additive manufacturing technology such as direct deposition of a metal substrate and circuits (dies) on a complex helical cooler that can only be manufactured via three-dimensional printing. By co-designing and testing the cooler, we have quantified the impact of the swirled flow on the junction temperature with respect to a conventional (non-swirl) two-phase-flow-cooled power electronics package. At steady-state, our post-test thermal simulations predict a junction temperature reduction from 185 °C to 75 °C at the same power dissipation. When the heat load is unsteady (United States Environmental Protection Agency Urban Drive Cycle), the junction temperature reduction is 140 °C to 60 °C.

References

1.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1996
,
Convective Boiling and Condensation
,
Oxford University Press
, Oxford, UK.
2.
Yarin
,
L. P.
,
Mosyak
,
A.
, and
Hetsroni
,
G.
,
2009
, “
Fluid Flow, Heat Transfer and Boiling in Microchannels
,” Springer-Verlag, Berlin, Germany
3.
Warrier
,
P.
,
Sathyanarayana
,
A.
,
Patil
,
D. V.
,
France
,
S.
,
Joshi
,
Y.
, and
Teja
,
A. S.
,
2012
, “
Novel Heat Transfer Fluids for Direct Immersion Phase Change Cooling of Electronic Systems
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3379
3385
.10.1016/j.ijheatmasstransfer.2012.02.063
4.
Green
,
C.
,
Kottke
,
P.
,
Xuefei
,
H.
,
Woodrum
,
C.
,
Sarvey
,
T.
,
Asrar
,
P.
,
Zhang
,
X.
,
Joshi
,
Y.
,
Fedorov
,
A.
,
Sitaraman
,
S.
, and
Bakir
,
M.
,
2015
, “
A Review of Two-Phase Forced Cooling in Three-Dimensional Stacked Electronics: Technology Integration
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040802
.10.1115/1.4031481
5.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
3
), p.
034001
.10.1115/1.4005126
6.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2011
, “
Boiling Heat Transfer and Flow Regimes in Microchannels—A Comprehensive Understanding
,”
ASME J. Electron. Packag.
,
133
(
1
), p.
011001
.10.1115/1.4002721
7.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041002
.10.1115/1.4005300
8.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2009
, “
Measurement and Prediction of Pressure Drop in a Two-Phase Micro-Pin-Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5173
5184
.10.1016/j.ijheatmasstransfer.2009.05.007
9.
Sharar
,
D.
,
Jankowski
,
N. R.
, and
Morgan
,
B.
,
2010
, “
Review of Two-Phase Electronics Cooling for Army Vehicle Applications
,” Army Research Laboratory, Adelphi, MD, Report No. ARL-TR-5323.
10.
David
,
T.
,
Mendler
,
D.
,
Mosyak
,
A.
,
Bar-Cohen
,
A.
, and
Hetsroni
,
G.
,
2014
, “
Thermal Management of Time-Varying High Heat Flux Electronic Devices
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
021003
.10.1115/1.4027325
11.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
1
), pp.
101
107
.10.1115/1.1839587
12.
Kureta
,
M.
, and
Akimoto
,
H.
,
2002
, “
Critical Heat Flux Correlation for Subcooled Boiling Flow in Narrow Channels
,”
Int. J. Heat Mass Transfer
,
45
(
20
), pp.
4107
4115
.10.1016/S0017-9310(02)00129-1
13.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
, and
Cummins
,
G.
,
2009
, “
Two-Phase Flow Instabilities in a Silicon Microchannels Heat Sink
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
854
867
.10.1016/j.ijheatfluidflow.2009.03.013
14.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2267
2281
.10.1016/j.ijheatmasstransfer.2007.08.027
15.
Tong
,
X. C.
,
2011
, “
Liquid Cooling Devices and Their Materials Selection
,”
Advanced Materials for Thermal Management of Electronic Packaging
, Vol.
30
,
Springer
,
New York
, pp.
421
475
.
16.
Zhang
,
X.
,
Han
,
X.
,
Sarvey
,
T. E.
,
Green
,
C. E.
,
Kottke
,
P. A.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
, and
Bakir
,
M.
,
2015
, “
3D IC With Embedded Microfluidic Cooling: Technology, Thermal Performance, and Electrical Implications
,”
ASME
Paper No. IPACK2015-48584.10.1115/IPACK2015-48584
17.
Lee
,
J.
, and
Mudawar
,
I.
,
2009
, “
Experimental Investigation and Theoretical Model for Subcooled Flow Boiling Pressure Drop in Microchannel Heat Sinks
,”
ASME J. Electron. Packag.
,
131
(
3
), p.
031008
.10.1115/1.3144146
18.
Dong
,
T.
,
Yang
,
Z.
,
Bi
,
Q.
, and
Zhang
,
Y.
,
2007
, “
Freon R141b Flow Boiling in Silicon Microchannel Heat Sinks: Experimental Investigation
,”
Heat Mass Transfer
,
44
(
3
), pp.
315
324
.10.1007/s00231-007-0236-9
19.
Stevanovic
,
L. D.
,
Beaupre
,
R. A.
,
Gowda
,
A. V.
,
Pautsch
,
A. G.
, and
Solovitz
,
S. A.
,
2010
, “
Integral Micro-Channel Liquid Cooling for Power Electronics
,” 25th Annual IEEE Applied Power Electronics Conference and Exposition (
APEC
), Palm Springs, CA, Feb. 21–25, pp.
1591
1597
.10.1109/APEC.2010.5433444
20.
Koşar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2005
, “
Reduced Pressure Boiling Heat Transfer in Rectangular Microchannels With Interconnected Reentrant Cavities
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
10
), pp.
1106
1114
.10.1115/1.2035107
21.
Lin
,
P.
,
Fu
,
B.
, and
Pan
,
C.
,
2011
, “
Critical Heat Flux on Flow Boiling of Methanol-Water Mixtures in a Diverging Microchannel With Artificial Cavities
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3156
3166
.10.1016/j.ijheatmasstransfer.2011.04.016
22.
Isaacs
,
S. A.
,
Joshi
,
A.
,
Zhang
,
Y.
,
Bakir
,
M. S.
, and
Kim
,
Y. J.
,
2013
, “
Two-Phase Flow and Heat Transfer in Pin-Fin Enhanced Micro-Gaps With Non-Uniform Heating
,”
ASME
Paper No. MNHMT2013-22124.10.1115/MNHMT2013-22124
23.
Kottke
,
P. A.
,
Yun
,
T. M.
,
Green
,
C. E.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2016
, “
Two-Phase Convective Cooling for Ultrahigh Power Dissipation in Microprocessors
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
1
), p.
011501
.10.1115/1.4031111
24.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2012
, “
Experimental Investigation of Local Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap Channel
,”
Int. J. Multiphase Flow
,
42
, pp.
164
174
.10.1016/j.ijmultiphaseflow.2012.02.007
25.
Sharar
,
D. J.
,
Jankowski
,
N. R.
, and
Bar-Cohen
,
A.
,
2013
, “
Modified Model for Improved Flow Regime Prediction in Internally-Grooved Tubes
,”
ASME
Paper No. IPACK2013-73199.10.1115/IIPACK2013-73199
26.
Sharar
,
D. J.
, and
Bar-Cohen
,
A.
,
2014
, “
Two-Phase Flow Regimes and Evaporative Heat Transfer in Internally-Grooved Tubes
,”
J. Enhanced Heat Transfer
,
21
(
2–3
), pp.
195
230
.10.1615/JEnhHeatTransf.2015012286
27.
Beckman
,
W. A.
, and
Merte
,
H.
,
1965
, “
A Photographic Study of Boiling in an Accelerating System
,”
ASME J. Heat Transfer-Trans. ASME
, 87(3), pp. 374–380.10.1115/1.3689119
28.
Gray
,
V. H.
, and
Marto
,
P. J.
,
1971
, “
Effects of High Accelerations and Heat Fluxes on Nucleate Boiling of Water in an Axisymmetric Rotating Boiler
,” NASA Technical Note TN D-6307.
29.
Usenko
,
V. I.
, and
Fainzilberg
,
S. N.
,
1974
, “
Effect of Acceleration on Critical Heat Load With Boiling of Freons on Elements Having Small Transverse Dimensions
,”
High Temperature
,
12
, pp.
490
496
.
30.
Costello
,
C. P.
, and
Adams
,
J. M.
,
1961
, “
Burnout Heat Fluxes in Pool Boiling at High Accelerations
,”
Int. Dev. Heat Transfer
,
2
, p.
230
.
31.
Gambill
,
W. R.
, and
Greene
,
N. D.
,
1958
, “
Boiling Burnout With Water in Vortex Flow
,” Oak Ridge National Laboratory, Oak Ridge, TN.https://www.osti.gov/servlets/purl/4306809
32.
Nariai
,
H.
,
Inasaka
,
F.
,
Ishikawa
,
A.
, and
Fujisaki
,
W.
,
1992
, “
Critical Heat Flux of Subcooled Flow Boiling in Tube With Internal Twisted Tape Under Non-Uniform Heating Conditions
,”
Proc. ANS Winter Meeting (THD)
, San Francisco, CA, Nov. 10–15, pp. 38–46.https://www.taylorfrancis.com/chapters/edit/10.1201/9780367812089-27/critical-heat-fluxsubcooled-flow-boiling-tube-without-internal-twisted-tape-uniform-non-uniform-heat-fluxconditions-hideki-nariai-fujio-inasaka
33.
Agrawal
,
K. N.
,
Varma
,
H. K.
, and
Lal
,
S.
,
1982
, “
Pressure Drop During Forced Convection Boiling of R-12 Under Swirl Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
4
), pp.
758
762
.10.1115/1.3245196
34.
De Bock
,
H. P. J.
,
Bourassa
,
C.
, and
Gerstler
,
D.
,
2019
, “
Cyclone Cooler Device
,” Patent No. 16/539,807.
35.
Galloway
,
J. E.
, and
Mudawar
,
I.
,
1992
, “
Critical Heat flux enhancement by Means of Liquid Subcooling and Centrifugal Force Induced by Flow Curvature
,”
Int. J. Heat Mass Transfer
,
35
(
5
), pp.
1247
1260
.10.1016/0017-9310(92)90182-R
36.
Costello
,
C.
, and
Tuthill
,
W.
,
1961
, “
Effects of Acceleration on Nucleate Pool Boiling
,”
Chem. Eng. Prog. Symp. Ser.
,
57
, pp.
189
196
.
37.
Amidu
,
A. A.
, and
Addad
,
Y.
,
2019
, “
Bubble-Induced Enhancement of Single-Phase Liquid Forced Convection Heat Transfer During Subcooled Nucleate Flow Boiling
,”
Ann. Nucl. Energy
,
134
, pp.
60
66
.10.1016/j.anucene.2019.06.001
38.
Katto
,
Y.
, and
Ishii
,
K.
,
1978
, “
Burnout in a High Heat Flux Boiling System With a Forced Supply of Liquid Through a Plane Jet
,”
Proceedings of the Sixth International Heat Transfer Conference
, Toronto, Canada, Aug. 7–11, pp.
435
440
.https://inis.iaea.org/search/search.aspx?orig_q=RN:10473617
39.
Gambill
,
W. R.
,
1965
, “
Subcooled Swirl-Flow Boiling and Burnout With Electrically Heated Twisted Tapes and Zero Wall Flux
,”
ASME J. Heat Transfer-Trans. ASME
,
87
(
3
), pp.
342
348
.10.1115/1.3689112
40.
Lopina
,
R. F.
, and
Bergles
,
A. E.
,
1973
, “
Subcooled Boiling of Water in Tape-Generated Swirl Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
95
(
2
), pp.
281
283
.10.1115/1.3450049
41.
Tong
,
W.
,
Bergles
,
A. E.
, and
Jensen
,
M. K.
,
2017
, “
Critical Review on Heat Flux and Pressure Drop of Subcooled Flow Boiling in Small-Diameter Tubes With Twisted-Tape Inserts
,”
J. Enhanced Heat Transfer
,
24
(
1–6
), pp.
159
222
.10.1615/JEnhHeatTransf.v24.i1-6.110
42.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2003
, “
Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts
,”
Advances in Heat Transfer
, 36, pp.
183
266
.
43.
API
,
1991
, “
Recommended Practice for Design and Installation of Offshore Products Platform Piping Systems
,” American Petroleum Institute, Washington, DC, Standard No. API RP 14E (R2019).
44.
De Bock
,
H. P. J.
,
2013
, “
Design and Experimental Validation of a Micro-Nano Structured Thermal Ground Plane for High-G Environments
,” Ph.D. dissertation, University of Cincinnati, Cincinnati, OH.
45.
de Bock
,
H. P. J.
,
Chauhan
,
S.
,
Chamarthy
,
P.
,
Eastman
,
C.
,
Weaver
,
S.
,
Whalen
,
B. P.
,
Deng
,
T.
,
Russ
,
B.
,
Gerner
,
F. M.
,
Johnson
,
D.
,
Courson
,
D.
,
Leland
,
Q.
, and
Yerkes
,
K.
,
2011
, “
Development and Experimental Validation of a Micro/Nano Thermal Ground Plane
,”
ASME
Paper No. AJTEC2011-44646.10.1115/AJTEC2011-44646
46.
Olesen
,
K.
,
Bredtmann
,
R.
, and
Eisele
,
R.
,
2006
, “
‘ShowerPower’ New Cooling Concept for Automotive Application
,” Automotive Power Electronics, Paris, France, June 21–22, pp.
1
9
.
47.
Echeverria
,
M. J.
,
Quintero
,
P. O.
,
Ibitavo
,
D.
, and
Boteler
,
L.
,
2018
, “
Numerical Approach to Cold Gas Spray on Ceramic Substrates for Power Electronics Packaging
,”
ASME
Paper No. IPACK2018-8279.10.1115/IPACK2018-8279
48.
Song
,
Y.
, and
Wang
,
B.
,
2013
, “
Quantitative Evaluation for Reliability of Hybrid Electric Vehicle Powertrain
,”
Fourth International Conference on Power Engineering Energy and Electrical Drives
, Istanbul, Turkey, May 13–17, pp.
1404
1409
.10.1109/PowerEng.2013.6635820
49.
Wood
,
R. A.
, and
Salem
,
T. E.
,
2012
, “
Long-Term Operation and Reliability Study of a 1200-V, 880-A All-SiC Dual Module
,”
International Symposium on Power Electronics, Electrical Drives, Automation and Motion
, Sorrento, Italy, June 20–22, pp.
1520
1525
.10.1109/SPEEDAM.2012.6264530
50.
Jankowski
,
N. R.
, and
McCluskey
,
F. P.
,
2009
, “
Modeling Transient Thermal Response of Pulsed Power Electronic Packages
,”
2009 IEEE Pulsed Power Conference
, Washington, DC, June 28–July 2, pp.
820
825
.10.1109/PPC.2009.5386368
You do not currently have access to this content.