Abstract

Automotive underhood electronics are subjected to high operating temperatures in the neighborhood of 150–200 °C for prolonged periods in the neighborhood of 10 yr. Consumer grade off-the-shelf electronics are designed to operate at 55–85 °C with a lower use-life of 3–5 yr. Underfill materials are used to provide supplemental restraint to fine-pitch area array electronics and meet the reliability requirements. In this paper, a number of different underfill materials are subjected to automotive underhood temperatures to study the effect of long time isothermal exposure on microstructure and dynamic mechanical properties. It has been shown that isothermal aging oxidizes the underfill, which can change the mechanical properties of the material significantly. The oxidation of underfill was studied experimentally by measuring oxidation layer thickness using polarized optical microscope. The effect on the mechanical properties was studied using the dynamic mechanical properties of underfill with dynamic mechanical analyzer (DMA). Two different underfill materials were subjected to three different isothermal exposures, which are below, near, and above the glass transition temperature of the underfills. The dynamic mechanical viscoelastic properties like storage modulus, loss modulus, tan delta, and their respective glass transition temperatures were investigated. Three-point bending mode was used in the DMA with a frequency of 1 Hz operating at 3 °C/min.

References

1.
Sillanpaa
,
M.
, and
Okura
,
J. H.
,
2004
, “
Flip Chip on Board: Assessment of Reliability in Cellular Phone Application
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
3
), pp.
461
–46
7
.10.1109/TCAPT.2004.831767
2.
Pascariu
,
G.
,
Cronin
,
P.
, and
Crowley
,
D.
,
2003
, “
Next Generation Electronics Packaging Utilizing Flip Chip Technology
,”
IEEE/CPMT/SEMI 28th International Electronics Manufacturing Technology Symposium (IEMT 2003)
, San Jose, CA, July 16–18, IEEE, pp.
423
426
.10.1109/IEMT.2003.1225938
3.
Bedinger
,
J. M.
,
2000
, “
Microwave Flip Chip and BGA Technology
,”
2000 IEEE MTT-S International Microwave Symposium Digest
,
Vol.
2
, Boston, MA, June 11–16,
IEEE
, Cat. No. 00CH37017, pp.
713
716
.
4.
Jung
,
E.
,
Heinricht
,
K.
,
Kloeser
,
J.
,
Aschenbrenner
,
R.
, and
Reichl
,
H.
,
1998
, “
Alternative Solders for Flip Chip Applications in the Automotive Environment
,”
22nd IEEE/CPMT International Electronics Manufacturing Technology Symposium (IEMT-Europe 1998), Electronics Manufacturing and Development for Automotives
,
Berlin, Germany, Apr. 29,
IEEE
, Cat. No. 98CH36204, pp.
82
91
.10.1109/IEMTE.1998.723064
5.
Ray
,
S. K.
,
Quinones
,
H.
,
Iruvanti
,
S.
,
Atwood
,
E.
, and
Walls
,
L.
,
1997
, “
Ceramic Column Grid Array (CCGA) Module for a High Performance Workstation Application
,”
1997 Proceedings of the 47th Electronic Components and Technology Conference
, San Jose, CA, May 18–21,
IEEE
, pp.
319
324
.10.1109/ECTC.1997.606187
6.
van den Crommenacker
,
J.
,
2003
, “
The System-in-Package Approach
,”
Commun. Eng.
,
1
(
3
), pp.
24
25
.10.1049/ce:20030303
7.
Liji
,
Z.
,
Li
,
W.
,
Xiaoming
,
X.
, and
Kempe
,
W.
,
2002
, “
An Investigation on Thermal Reliability of Underfilled PBGA Solder Joints
,”
IEEE Trans. Electron. Packag. Manuf.
,
25
(
4
), pp.
284
288
.10.1109/TEPM.2002.807720
8.
Liu
,
Y.
,
2006
, “
Lead-Free Assembly and Reliability of Chip Scale Packages and 01005 Components
,” Ph.D. dissertation,
Auburn University
,
Auburn, AL
.
9.
Rao
,
Y.
,
Shi
,
S. H.
, and
Wong
,
C. P.
,
2000
, “
An Improved Methodology for Determining Temperature Dependent Moduli of Underfill Encapsulants
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
3
), pp.
434
439
.10.1109/6144.868841
10.
Lin
,
C.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2009
, “
Isothermal Aging Induced Evolution of the Material Behavior of Underfill Encapsulants
,”
2009 59th Electronic Components and Technology Conference
, San Diego, CA, May 26–29,
IEEE
, pp.
134
149
.10.1109/ECTC.2009.5074007
11.
Liu
,
F.
,
Wang
,
Y. P.
,
Chai
,
K.
, and
Her
,
T. D.
,
2001
, “
Characterization of Molded Underfill Material for Flip Chip Ball Grid Array Packages
,”
2001 Proceedings of the 51st Electronic Components and Technology Conference
, San Diego, CA, May 29–June 1,
IEEE
, Cat. No. 01CH37220, pp.
288
292
.10.1109/ECTC.2001.927737
12.
Lall
,
P.
,
Zhang
,
Y.
,
Kasturi
,
M.
,
Wu
,
H.
,
Davis
,
E.
, and
Suhling
,
J.
,
2020
, “
Property-Performance Relationships for Sustained High Temperature Operation of Electronics
,”
2020 IEEE 70th Electronic Components and Technology Conference (ECTC)
, Orlando, FL, June 3–30,
IEEE
, pp.
257
268
.10.1109/ECTC32862.2020.00051
13.
Lall
,
P.
,
Kasturi
,
M.
,
Wu
,
H.
, and
Davis
,
E.
,
2020
, “
Effect of Long Term Isothermal Exposure on Underfill Material Properties
,” 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 21–23, IEEE, pp.
1389
1394
.10.1109/ITherm45881.2020.9190482
14.
Lall
,
P.
,
Kasturi
,
M.
,
Suhling
,
J.
, and
Lockers
,
D.
,
2019
, “
Stress Strain Analysis on Stitch Bond of Cu-Al Wirebonds Using X-Ray Micro-CT Technique
,” 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31,
IEEE
, pp.
841
846
.10.1109/ITHERM.2019.8757461
15.
Lall
,
P.
,
Kasturi
,
M.
,
Kothari
,
N.
, and
Locker
,
D.
,
2019
, “
X-Ray Micro-Computed Tomography Based Fe Models to Capture Realistic Manufacturing Variability in Cu-Al Wirebonds and Solder-Joints in QFNs
,”
SMTA International
, Rosemont, IL, Sept. 22–26, pp.
33
45
.
16.
Lall
,
P.
,
Deshpande
,
S.
,
Luo
,
Y.
,
Bozack
,
M.
,
Nguyen
,
L.
, and
Murtuza
,
M.
,
2014
, “
Degradation Mechanisms in Electronic Mold Compounds Subjected to High Temperature in Neighborhood of 200 °C
,” 2014 IEEE 64th Electronic Components and Technology Conference (
ECTC
), Orlando, FL, May 27–30,
IEEE
, pp.
242
254
.10.1109/ECTC.2014.6897295
17.
Lall
,
P.
,
Deshpande
,
S.
, and
Nguyen
,
L.
,
2017
, “
Effect of EMCs on the High Current Reliability of Cu Wirebonds Operating in Harsh Environments
,” 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2,
IEEE
, pp.
1315
1324
.10.1109/ITHERM.2017.7992634
18.
Lall
,
P.
,
Deshpande
,
S.
,
Kothari
,
N.
, and
Nguyen
,
L.
,
2018
, “
Effect of Green EMCs on Fatigue Reliability of Molded Cu Wirebond System
,” 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1,
IEEE
, pp.
1041
1049
.10.1109/ITHERM.2018.8419624
19.
Menard
,
K. P.
, and
Menard
,
N.
,
2006
, “
Dynamic Mechanical Analysis
,”
Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation
, John Wiley & Sons, Ltd., Hoboken, NJ.
20.
Foreman
,
J.
,
Sauerbrunn
,
S. R.
, and
Marcozzi
,
C. L.
,
2006
, “
Exploring the Sensitivity of Thermal Analysis Techniques to the Glass Transition
,”
TA Instruments
, New Castle, DE.
21.
Jones
,
D. S.
,
1999
, “
Dynamic Mechanical Analysis of Polymeric Systems of Pharmaceutical and Biomedical Significance
,”
Int. J. Pharm.
,
179
(
2
), pp.
167
–1
78
.10.1016/S0378-5173(98)00337-8
22.
Royall
,
P. G.
,
Huang
,
C. Y.
,
Tang
,
S. W.
,
Duncan
,
J.
,
Van-de-Velde
,
G.
, and
Brown
,
M. B.
,
2005
, “
The Development of DMA for the Detection of Amorphous Content in Pharmaceutical Powdered Materials
,”
Int. J. Pharm.
,
301
(
1–2
), pp.
181
–1
91
.10.1016/j.ijpharm.2005.05.015
23.
Lafferty
,
S. V.
,
Newton
,
J. M.
, and
Podczeck
,
F.
,
2002
, “
Dynamic Mechanical Thermal Analysis Studies of Polymer Films Prepared From Aqueous Dispersion
,”
Int. J. Pharm.
,
235
(
1–2
), pp.
107
–1
11
.10.1016/S0378-5173(01)00973-5
24.
Wunderlich
,
B.
,
1997
, “
Thermal Characterization of Polymeric Materials
,”
The Basis of Thermal Analysis
,
Academic Press
,
Toronto, ON, Canada
, pp.
206
483
.
25.
Kasap
,
S.
, and
Capper
,
P.
, eds.,
2017
,
Springer Handbook of Electronic and Photonic Materials
,
Springer
, New York.
26.
Raghavan
,
S.
,
2014
, “
Experimental and Theoretical Study of On-Chip Back-End-of-Line (BEOL) Stack Fracture During Flip-Chip Reflow Assembly
,”
Ph.D. dissertation
,
Georgia Institute of Technology
, Atlanta, GA.
27.
Chen
,
C.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2018
, “
Improved Submodeling Finite Element Simulation Strategies for BGA Packages Subjected to Thermal Cycling
,” 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1,
IEEE
, pp.
1146
1154
.10.1109/ITHERM.2018.8419533
You do not currently have access to this content.