Abstract

An increasingly common power saving practice in data center thermal management is to swap out air cooling unit blower fans with electronically commutated plug fans, Although, both are centrifugal blowers. The blade design changes: forward versus backward curved with peak static efficiencies of 60% and 75%, respectively, which results in operation power savings. The side effects of which are not fully understood. Therefore, it has become necessary to develop an overall understanding of backward curved blowers and compare the resulting flow, pressure, and temperature fields with forwarding curved ones in which the induced fields are characterized, compared, and visualized in a reference data center which may aid data center planning and operation when making the decisions of which computer room air handler (CRAH) technology to be used. In this study, experimental and numerical characterization of backward curved blowers is introduced. Then, a physics-based computational fluid dynamics model is built using the 6sigmaroom tool to predict/simulate the measured fields. Five different scenarios were applied at the room level for the experimental characterization of the cooling units and another two scenarios were applied for comparison and illustration of the interaction between different CRAH technologies. Four scenarios were used to characterize a CRAH with backward curved blowers, during which a CRAH with forwarding curved was powered off. An alternate arrangement was examined to quantify the effect of possible flow constraints on the backward curved blower's performance. Then parametric and sensitivity of the baseline modeling are investigated and considered. Different operating conditions are applied at the room level for experimental characterization, comparison, and illustration of the interaction between different CRAH technologies. The measured data is plotted and compared with the computational fluid dynamics (CFD) model assessment to visualize the fields of interest. The results show that the fields are highly dependent on CRAH technology. The tile to CRAH airflow ratios for the flow constraints of scenarios 1, 2, 3, and 4 are 85.5%, 83.9%, 61%, and 59%, respectively. The corresponding leakage ratios are 14.5%, 16%, 38.9%, and 41%, respectively. Furthermore, the validated CFD model was used to investigate and compare the airflow pattern and plenum pressure distribution. Lastly, it is notable that a potential side effect of backward curved technology is the creation of an airflow dead zone.

References

1.
Greenberg
,
S.
,
Mills
,
E.
,
Tschudi
,
B.
,
Rumsey
,
P.
, and
Myatt
,
B.
,
2006
, “
Best Practices for Data Centers: Lessons Learned From Benchmarking 22 Data Centers
,”
Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings in Asilomar, ACEEE
, Pacific Grove, CA, Aug. 3, pp.
76
87
.https://www.researchgate.net/publication/237375801_Best_Practices_for_Data_Centers_Lessons_Learned_from_Benchmarking_22_Data_Centers
2.
Schmidt
,
R.
,
Beaty
,
D.
, and
Dietrich
,
J.
,
2007
, “
Increasing Energy Efficiency in Data Centers
,”
ASHRAE J.
,
49
(
12
), p.
18
.https://www.proquest.com/openview/6d91807833f6a455ba1007d136cd8b61/1?pq-origsite=gscholar&cbl=41118
3.
Patankar
,
S. V.
,
2010
, “
Airflow and Cooling in a Data Center
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
7
), p. 073001.10.1115/1.4000703
4.
Hamann
,
H. F.
,
Schappert
,
M.
,
Iyengar
,
M.
,
van Kessel
,
T.
, and
Claassen
,
A.
,
2008
, “
Methods and Techniques for Measuring and Improving Data Center Best Practices
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
IEEE
, Orlando, FL, May 28–31, pp.
1146
1152
.10.1109/ITHERM.2008.4544390
5.
Radmehr
,
A.
,
Schmidt
,
R. R.
,
Karki
,
K. C.
, and
Patankar
,
S. V.
,
2005
, “
Distributed Leakage Flow in Raised-Floor Data Centers
,”
ASME
Paper No. IPACK2005-73273.10.1115/IPACK2005-73273
6.
Iyengar
,
M.
,
Schmidt
,
R. R.
,
Hamann
,
H.
, and
VanGilder
,
J.
,
2007
, “
Comparison Between Numerical and Experimental Temperature Distributions in a Small Data Center Test Cell
,”
ASME
Paper No. IPACK2007-33508.10.1115/IPACK2007-33508
7.
Samadiani
,
E.
,
Rambo
,
J.
, and
Joshi
,
Y.
,
2010
, “
Numerical Modeling of Perforated Tile Flow Distribution in a Raised-Floor Data Center
,”
ASME J. Electron. Packag.
,
132
(
2
), p.
021002
.10.1115/1.4001589
8.
Abdelmaksoud
,
W. A.
,
Khalifa
,
H. E.
,
Dang
,
T. Q.
,
Elhadidi
,
B.
,
Schmidt
,
R. R.
, and
Iyengar
,
M.
,
2010
, “
Experimental and Computational Study of Perforated Floor Tile in Data Centers
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
IEEE
, Las Vegas, NV, June 2–5, pp.
1
10
.10.1109/ITHERM.2010.5501413
9.
Garimella
,
S. V.
,
Persoons
,
T.
,
Weibel
,
J. A.
, and
Gektin
,
V.
,
2017
, “
Electronics Thermal Management in Information and Communications Technologies: Challenges and Future Directions
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
8
), pp.
1191
1205
.10.1109/TCPMT.2016.2603600
10.
Nada
,
S. A.
, and
Said
,
M. A.
,
2017
, “
Comprehensive Study on the Effects of Plenum Depths on Airflow and Thermal Managements in Data Centers
,”
Int. J. Therm. Sci.
,
122
, pp.
302
312
.10.1016/j.ijthermalsci.2017.09.001
11.
Moazamigoodarzi
,
H.
,
Tsai
,
P. J.
,
Pal
,
S.
,
Ghosh
,
S.
, and
Puri
,
I. K.
,
2019
, “
Influence of Cooling Architecture on Data Center Power Consumption
,”
Energy
,
183
, pp.
525
535
.10.1016/j.energy.2019.06.140
12.
Lim
,
S. Y.
, and
Chang
,
H. J.
,
2021
, “
Airflow Management Analysis to Suppress Data Center Hot Spots
,”
Build. Environ.
,
197
, p.
107843
.10.1016/j.buildenv.2021.107843
13.
Song
,
P.
,
Zhang
,
Z.
, and
Zhu
,
Y.
,
2021
, “
Numerical and Experimental Investigation of Thermal Performance in Data Center With Different Deflectors for Cold Aisle Containment
,”
Build. Environ.
,
200
, p.
107961
.10.1016/j.buildenv.2021.107961
14.
Manaserh
,
Y. M.
,
Tradat
,
M. I.
,
Gharaibeh
,
A. R.
,
Sammakia
,
B. G.
, and
Tipton
,
R.
,
2021
, “
Shifting to Energy Efficient Hybrid Cooled Data Centers Using Novel Embedded Floor Tiles Heat Exchangers
,”
Energy Convers. Manage.
,
247
, p.
114762
.10.1016/j.enconman.2021.114762
15.
Manaserh
,
Y. M.
,
Tradat
,
M. I.
,
Hoang
,
C. H.
,
Sammakia
,
B. G.
,
Ortega
,
A.
,
Nemati
,
K.
, and
Seymour
,
M. J.
,
2021
, “
Degradation of Fan Performance in Cooling Electronics: Experimental Investigation and Evaluating Numerical Techniques
,”
Int. J. Heat Mass Transfer
,
174
, p.
121291
.10.1016/j.ijheatmasstransfer.2021.121291
16.
Tradat
,
M. I.
,
Khalili
,
S.
,
Khatabi
,
M.
,
Sammakia
,
B. G.
,
Seymour
,
M.
,
Tipton
,
R.
, and
Alissa
,
H. A.
,
2019
, “
Numerical Investigation of Novel Underfloor Air-Directors Effect on Data Center Performance
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, Las Vegas, NV, May 28–31, pp.
886
896
.10.1109/ITHERM.2019.8757464
17.
Roknaldin
,
F.
,
Sahan
,
R. A.
, and
Sun
,
X. H.
,
2002
, May, “
A Simplified CFD Model for the Radial Blower
,”
ITherm Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No. 02CH37258)
,
IEEE
, San Diego, CA, May 31–June 1, pp.
600
604
.10.1109/ITHERM.2002.1012509
18.
Stavreva
,
S.
, and
Serafimov
,
M.
,
2014
, “
Computational Fluid Dynamics (CFD) Analysis for Predicting the Airflow in a Data Centre
,”
TEM J.
,
3
(
3
), p.
235
.https://www.academia.edu/71596564/Computational_Fluid_Dynamics_CFD_Analysis_for_Predicting_the_Airflow_in_a_Data_Centre
19.
Huang
,
Z.
,
Dong
,
K.
,
Sun
,
Q.
,
Su
,
L.
, and
Liu
,
T.
,
2017
, “
Numerical Simulation and Comparative Analysis of Different Airflow Distributions in Data Centers
,”
Procedia Eng.
,
205
, pp.
2378
2385
.10.1016/j.proeng.2017.09.854
20.
Yuan
,
X.
,
Xu
,
X.
,
Liu
,
J.
,
Pan
,
Y.
,
Kosonen
,
R.
, and
Gao
,
Y.
,
2020
, “
Improvement in Airflow and Temperature Distribution With an In-Rack UFAD System at a High-Density Data Center
,”
Build. Environ.
,
168
, p.
106495
.10.1016/j.buildenv.2019.106495
21.
Erden
,
H. S.
,
Koz
,
M.
,
Yildirim
,
M. T.
, and
Khalifa
,
H. E.
,
2017
, “
Experimental Demonstration and Flow Network Model Verification of Induced CRAH Bypass for Cooling Optimization of Enclosed-Aisle Data Centers
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
11
), pp.
1795
1803
.10.1109/TCPMT.2017.2737878
22.
Wibron
,
E.
,
Ljung
,
A. L.
, and
Lundström
,
T. S.
,
2018
, “
Computational Fluid Dynamics Modeling and Validating Experiments of Airflow in a Data Center
,”
Energies
,
11
(
3
), p.
644
.10.3390/en11030644
23.
Wan
,
J.
,
Gui
,
X.
,
Kasahara
,
S.
,
Zhang
,
Y.
, and
Zhang
,
R.
,
2018
, “
Airflow Measurement and Management for Improving Cooling and Energy Efficiency in Raised-Floor Data Centers: A Survey
,”
IEEE Access
,
6
, pp.
48867
48901
.10.1109/ACCESS.2018.2866840
24.
Jin
,
C.
,
Bai
,
X.
, and
Yang
,
C.
,
2019
, “
Effects of Airflow on the Thermal Environment and Energy Efficiency in Raised-Floor Data Centers: A Review
,”
Sci. Total Environ.
,
695
, p.
133801
.10.1016/j.scitotenv.2019.133801
25.
Gong
,
X.
,
Zhang
,
Z.
,
Gan
,
S.
,
Niu
,
B.
,
Yang
,
L.
,
Xu
,
H.
, and
Gao
,
M.
,.
2020
, “
A Review on Evaluation Metrics of Thermal Performance in Data Centers
,”
Build. Environ.
,
177
, p.
106907
.10.1016/j.buildenv.2020.106907
26.
Huang
,
J.
,
Chen
,
C.
,
Guo
,
G.
,
Zhang
,
Z.
, and
Li
,
Z.
,
2019
, “
Numerical Investigation for the Arrangement of Perforated Tile Under a Non-Uniform Heat Source Condition in a Raised-Floor Data Center
,”
J. Phys. Conf. Ser.
,
1304
(
1
), p.
012021
.10.1088/1742-6596/1304/1/012021
27.
Alissa
,
H. A.
,
Nemati
,
K.
,
Sammakia
,
B.
,
Seymour
,
M.
,
Schneebeli
,
K.
, and
Schmidt
,
R.
,
2015
, “
Experimental and Numerical Characterization of a Raised Floor Data Center Using Rapid Operational Flow Curves Model
,”
ASME
Paper No. IPACK2015-48234.10.1115/IPACK2015-48234
28.
Tradat
,
M. I.
,
Alissa
,
H. A.
,
Nemati
,
K.
,
Khalili
,
S.
,
Sammakia
,
B. G.
,
Seymour
,
M. J.
, and
Tipton
,
R.
,
2017
, “
Impact of Elevated Temperature on Data Center Operation Based on Internal and External IT Instrumentation
,” 33rd Thermal Measurement, Modeling & Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 13–17, pp.
108
114
.10.1109/SEMITHERM.2017.7896916
29.
Tradat
,
M.
,
Mohsenian
,
G.
,
Manaserh
,
Y.
,
Sammakia
,
B.
,
Mendo
,
D.
, and
Alissa
,
H. A.
,
2020
, “
Experimental Analysis of Different Measurement Techniques of Server-Rack Airflow Predictions Towards Proper DC Airflow Management
,” 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 21–23, pp.
366
373
.
10.1109/ITherm45881.2020.9190584
30.
Tradat
,
M. I.
,
Manaserh
,
Y. “M. A.”
,
Sammakia
,
B. G.
,
Hoang
,
C. H.
, and
Alissa
,
H. A.
,
2021
, “
An Experimental and Numerical Investigation of Novel Solution for Energy Management Enhancement in Data Centers Using Underfloor Plenum Porous Obstructions
,”
Appl. Energy
,
289
, p.
116663
.10.1016/j.apenergy.2021.116663
31.
Gharaibeh
,
A. R.
,
Tradat
,
M. I.
,
Rangarajan
,
S.
,
Sammakia
,
B. G.
, and
Alissa
,
H. A.
,
2021
, “
Multi-Objective Optimization of 3D Printed Liquid Cooled Heat Sink With Guide Vanes for Targeting Hotspots in High Heat Flux Electronics
,”
Int. J. Heat Mass Transfer
, 184, p.
122287
.10.1016/j.ijheatmasstransfer.2021.122287
32.
Ling
,
Y. Z.
,
Zhang
,
X. S.
,
Zhang
,
K.
, and
Jin
,
X.
,
2017
, “
On the Characteristics of Airflow Through the Perforated Tiles for Raised-Floor Data Centers
,”
J. Build. Eng.
,
10
, pp.
60
68
.10.1016/j.jobe.2017.01.002
You do not currently have access to this content.