Abstract

The electromigration (EM) damage is becoming a severe problem in the printed flexible electronics as the printed circuits are fabricated thinner and thinner due to the development of printing technology. In this work, the EM behavior of printed silver wires was investigated by EM experiments and numerical simulations. The EM tests showed that voids are generated in the cathode area and hillocks are formed in the anode area for a wire with a small length. However, with the increase of wire length, hillocks tend to occur on the two sides of the silver wire middle part. The results of numerical simulations based on the atomic flux divergence (AFD) method revealed that the formation of the hillocks on the printed wire is caused by not only the mechanism of electron wind but also the strong temperature gradient along the wire length and width direction. Also, it can be concluded that the temperature gradient induced by Joule heating plays a more important role than electron wind in the atomic migration of the printed silver wire subjected to a high current density. The influence of the printed silver wire size on the EM behavior was also analyzed by numerical simulation, and the results demonstrated that the printed silver wires with a larger length and a smaller width-to-thickness ratio are more likely to develop hillocks on the two sides of silver wire middle part while subjected to a high current density.

References

1.
Yan
,
K.
,
Li
,
J.
,
Pan
,
L.
, and
Shi
,
Y.
,
2020
, “
Inkjet Printing for Flexible and Wearable Electronics
,”
APL Mater.
,
8
(
12
), p.
120705
.10.1063/5.0031669
2.
Kathirvelan
,
J.
,
2021
, “
Recent Developments of Inkjet-Printed Flexible Sensing Electronics for Wearable Device Applications: A Review
,”
Sensor Rev.
,
41
(
1
), pp.
46
56
.10.1108/SR-08-2020-0190
3.
Heo
,
J. S.
,
Eom
,
J.
,
Kim
,
Y.-H.
, and
Park
,
S. K.
,
2018
, “
Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications
,”
Small
,
14
(
3
), p.
1703034
.10.1002/smll.201703034
4.
Gao
,
W.
,
Ota
,
H.
,
Kiriya
,
D.
,
Takei
,
K.
, and
Javey
,
A.
,
2019
, “
Flexible Electronics Toward Wearable Sensing
,”
Acc. Chem. Res.
,
52
(
3
), pp.
523
533
.10.1021/acs.accounts.8b00500
5.
Wang
,
C.
,
Xia
,
K.
,
Wang
,
H.
,
Liang
,
X.
,
Yin
,
Z.
, and
Zhang
,
Y.
,
2019
, “
Advanced Carbon for Flexible and Wearable Electronics
,”
Adv. Mater.
,
31
(
9
), p.
1801072
.10.1002/adma.201801072
6.
Sim
,
G. D.
,
Yun
,
H.
,
Kim
,
H. H.
,
Lee
,
S. B.
, and
Vlassak
,
J. J.
,
2012
, “
Fatigue of Polymer-Supported Ag Thin Films
,”
Scr. Mater.
,
66
(
11
), pp.
915
918
.10.1016/j.scriptamat.2012.02.030
7.
Sim
,
G. D.
,
Won
,
S.
, and
Lee
,
S. B.
,
2012
, “
Tensile and Fatigue Behaviors of Printed Ag Thin Films on Flexible Substrates
,”
Appl. Phys. Lett.
,
101
(
19
), p.
191907
.10.1063/1.4766447
8.
Yi
,
S. M.
,
Choi
,
I. S.
,
Kim
,
B. J.
, and
Joo
,
Y. C.
,
2018
, “
Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue
,”
Electron. Mater. Lett.
,
14
, pp.
387
404
.10.1007/s13391-018-0043-0
9.
Hwang
,
B.
,
Seol
,
J. G.
,
An
,
C.-H.
, and
Kim
,
S. H.
,
2017
, “
Bending Fatigue Behavior of Silver Nanowire Networks With Different Densities
,”
Thin Solid Films
,
625
, pp.
1
5
.10.1016/j.tsf.2017.01.048
10.
Yang
,
J. K.
,
Lee
,
Y. J.
,
Yi
,
S. M.
,
Kim
,
B. J.
, and
Joo
,
Y. C.
,
2018
, “
Effect of Twisting Fatigue on the Electrical Reliability of a Metal Interconnect on a Flexible Substrate
,”
J. Mater. Res.
,
33
(
2
), pp.
138
148
.10.1557/jmr.2017.422
11.
Song
,
J.
,
2015
, “
Mechanics of Stretchable Electronics
,”
Curr. Opin. Solid State Mater. Sci.
,
19
(
3
), pp.
160
170
.10.1016/j.cossms.2015.01.004
12.
Liu
,
Z.
,
Ji
,
H.
,
Wang
,
S.
,
Zhao
,
W.
,
Huang
,
Y.
,
Feng
,
H.
,
Wei
,
J.
, and
Li
,
M.
,
2018
, “
Enhanced Electrical and Mechanical Properties of a Printed Bimodal Silver Nanoparticle Ink for Flexible Electronics
,”
Phys. Status Solidi A
,
215
(
14
), p.
1800007
.10.1002/pssa.201800007
13.
Lee
,
Y. I.
,
Kim
,
S.
,
Jung
,
S. B.
,
Myung
,
N. V.
, and
Choa
,
Y. H.
,
2013
, “
Enhanced Electrical and Mechanical Properties of Silver Nanoplatelet-Based Conductive Features Direct Printed on a Flexible Substrate
,”
ACS Appl. Mater. Interfaces
,
5
(
13
), pp.
5908
5913
.10.1021/am401757y
14.
Yao
,
W.
,
Basaran
,
C.
, and
Yao
,
W.
,
2012
, “
Electromigration Analysis of Solder Joints Under ac Load: A Mean Time to Failure Model
,”
J. Appl. Phys.
,
111
(
6
), p.
063703
.10.1063/1.3693532
15.
Abé
,
H.
,
Sasagawa
,
K.
, and
Saka
,
M.
,
2006
, “
Electromigration Failure of Metal Lines
,”
Int. J. Fract.
,
138
(
1–4
), pp.
219
240
.10.1007/s10704-006-0059-6
16.
Tu
,
K. N.
,
Liu
,
Y.
, and
Li
,
M.
,
2017
, “
Effect of Joule Heating and Current Crowding on Electromigration in Mobile Technology
,”
Appl. Phys. Rev.
,
4
(
1
), p.
011101
.10.1063/1.4974168
17.
Li
,
S.
,
Abdulhamid
,
M. F.
, and
Basaran
,
C.
,
2009
, “
Simulating Damage Mechanics of Electromigration and Thermomigration
,”
IEEE Trans. Adv. Packag.
,
32
(
2
), pp.
478
485
.10.1109/TADVP.2008.2005840
18.
Sukharev
,
V.
,
Zschech
,
E.
, and
Nix
,
W. D.
,
2007
, “
A Model for Electromigration-Induced Degradation Mechanisms in Dual-Inlaid Copper Interconnects: Effect of Microstructure
,”
J. Appl. Phys.
,
102
, p.
053505
.10.1063/1.2775538
19.
Zhao
,
Z.
,
Mamidanna
,
A.
,
Lefky
,
C.
,
Hildreth
,
O.
, and
Alford
,
T. L.
,
2016
, “
A Percolative Approach to Investigate Electromigration Failure in Printed Ag Structures
,”
J. Appl. Phys.
,
120
(
12
), p.
125104
.10.1063/1.4963755
20.
Lin
,
W.-H.
, and
Ouyang
,
F.-Y.
,
2019
, “
Electromigration Behavior of Screen-Printing Silver Nanoparticles Interconnects
,”
JOM
,
71
(
9
), pp.
3084
3093
.10.1007/s11837-019-03627-0
21.
Saito
,
D.
,
Sasagawa
,
K.
,
Moriwaki
,
T.
, and
Fujisaki
,
K.
,
2020
, “
Electromigration Damage of Flexible Electronic Lines Printed With Ag Nanoparticle Ink
,”
ASME J. Electron. Packag.
,
142
(
3
), p.
031107S
.10.1115/1.4046849
22.
Cui
,
Z.
,
Fan
,
X.
, and
Zhang
,
G.
,
2019
, “
General Coupling Model for Electromigration and One-Dimensional Numerical Solutions
,”
J. Appl. Phys.
,
125
(
10
), p.
105101
.10.1063/1.5065376
23.
Cui
,
Z.
,
Fan
,
X.
, and
Zhang
,
G.
,
2022
, “
Implementation of Fully Coupled Electromigration Theory in COMSOL
,” IEEE 72nd Electronic Components and Technology Conference (
ECTC
), San Diego, CA, May 31–June 3, pp.
233
238
.10.1109/ECTC51906.2022.00046
24.
Chatterjee
,
A.
,
Bai
,
T.
,
Edler
,
F.
,
Tegenkamp
,
C.
,
Weide-Zaage
,
K.
, and
Pfnür
,
H.
,
2018
, “
Electromigration and Morphological Changes in Ag Nanostructures
,”
J. Phys.: Condens. Matter
,
30
(
8
), p.
084002
.10.1088/1361-648X/aaa80a
25.
Jing
,
J. P.
,
Liang
,
L.
, and
Meng
,
G.
,
2010
, “
Electromigration Simulation for Metal Lines
,”
ASME J. Electron. Packag.
,
132
(
1
), p.
011002
.10.1115/1.4000716
26.
Tu
,
K. N.
,
2007
,
Solder Joint Technology: Materials, Properties, and Reliability
,
Springer
, New York.
27.
Black
,
J. R.
,
1969
, “
Electromigration—A Brief Survey and Some Recent Results
,”
IEEE Trans. Electron Devices
,
16
(
4
), pp.
338
347
.10.1109/T-ED.1969.16754
28.
Hauder
,
M.
,
Gstöttner
,
J.
,
Hansch
,
W.
, and
Schmitt-Landsiedel
,
D.
,
2001
, “
Scaling Properties and Electromigration Resistance of Sputtered Ag Metallization Lines
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
838
840
.10.1063/1.1345801
29.
Weide-Zaage
,
K.
,
Kashanchi
,
F.
, and
Aubel
,
O.
,
2008
, “
Simulation of Migration Effects in Nanoscaled Copper Metallizations
,”
Microelectron. Reliab.
,
48
(
8–9
), pp.
1398
1402
.10.1016/j.microrel.2008.06.025
You do not currently have access to this content.