Abstract

Fiber optic gyroscopes (FOGs) are widely used in attitude control systems of spacecraft such as satellites and Mars rovers for their superior spatial adaptability. However, changes in ambient temperature can cause errors in the FOG and reduce its output accuracy. In this paper, a fuzzy two-stage temperature control strategy applied to a satellite-borne three-axis integrated fiber optic gyroscope (TAIFOG) is proposed. And the control rules of the fuzzy two-stage temperature controller are described in detail. A thermodynamic model that can quickly and accurately respond to the dynamic thermal characteristics of the satellite-borne TAIFOG is also constructed based on the lumped method. The effectiveness of the proposed fuzzy two-stage temperature control strategy in improving the temperature stability of the satellite-borne TAIFOG in orbit is verified through numerical studies. Numerical results show that this fuzzy two-stage active temperature control strategy can fundamentally improve the thermal state of the satellite-borne TAIFOG and ensure that its sensitive element fiber optic coils maintain high-temperature stability while the TAIFOG is in orbit. In addition, the startup time of TAIFOG is reduced to 308 s compared to the case without active temperature control, which is a reduction of 96.27%. This active temperature control strategy is well suited for engineering applications to improve FOG output accuracy.

References

1.
Ovchinnikov
,
M.
, and
Barrington-Brown
,
J.
,
2021
, “
Attitude Determination and Control Systems
,”
Cubesat Handbook
,
Academic Press
, Cambridge, MA, pp.
263
281
.10.1016/B978-0-12-817884-3.00014-X
2.
Shakouri
,
A.
, and
Assadian
,
N.
,
2018
, “
Fault Detection and Isolation of Satellite Gyroscopes Using Relative Positions in Formation Flying
,”
Aerosp. Sci. Technol.
,
78
, pp.
403
417
.10.1016/j.ast.2018.04.039
3.
Dang
,
S. W.
,
Li
,
L. J.
,
Wang
,
Q. Q.
,
Wang
,
K. L.
, and
Cheng
,
P. Z.
,
2020
, “
Fiber Optic Gyro Noise Reduction Based on Hybrid CEEMDAN-LWT Method
,”
Measurement
,
161
, p.
107865
.10.1016/j.measurement.2020.107865
4.
Jin
,
J.
,
Ren
,
C.
,
Teng
,
F.
,
Zhang
,
S.
, and
Pan
,
X.
,
2017
, “
Method of Suppression of Impulse Interferences in Digital Closed Loop Fiber Optic Gyro Detected Signal
,”
Acta Astronaut.
,
130
, pp.
162
166
.10.1016/j.actaastro.2016.10.022
5.
Shang
,
K.
,
Lei
,
M.
,
Xiang
,
Q.
,
Na
,
Y.
, and
Zhang
,
L.
,
2021
, “
Tactical-Grade Interferometric Fiber Optic Gyroscope Based on an Integrated Optical Chip
,”
Opt. Commun.
,
485
, p.
126729
.10.1016/j.optcom.2020.126729
6.
Alishacelestin
,
X.
,
Sivanantha Raja
,
A.
, and
Selvendran
,
S.
,
2021
, “
A Highly Birefringent Photonic Crystal Fiber With Compact Cladding Layers Suitable for Fiber Optic Gyroscope Application
,”
Laser Phys.
,
31
(
6
), p.
065101
.10.1088/1555-6611/ac0049
7.
Korkishko
,
Y. N.
,
Fedorov
,
V. A.
,
Prilutskiy
,
V. E.
,
Ponomarev
,
V. G.
,
Morev
,
I. V.
,
Obuhovich
,
D. V.
, et al.,
2016
, “
Fiber Optic Gyro for Space Applications. Results of R&D and Flight Tests
,”
2016 IEEE International Symposium on Inertial Sensors and Systems
,
Laguna Beach, CA
, Feb. 22–25, pp.
37
41
.10.1109/ISISS.2016.7435539
8.
Yang
,
B.
,
Li
,
Y.
,
Teng
,
F.
,
Sun
,
L.
,
Zhou
,
X.
, and
Wang
,
J.
,
2020
, “
Results and Flight Tests of High Precision Photonic Crystal Fiber Optic Gyroscope
,”
Opt. Fiber Technol.
,
60
, p.
102365
.10.1016/j.yofte.2020.102365
9.
Yuan
,
R.
,
Song
,
N.
, and
Jin
,
J.
,
2012
, “
Autonomous Estimation of Angle Random Walk of Fiber Optic Gyro in Attitude Determination System of Satellite
,”
Measurement
,
45
(
6
), pp.
1362
1366
.10.1016/j.measurement.2012.03.031
10.
Chen
,
X.
, and
Shen
,
C.
,
2013
, “
Study on Temperature Error Processing Technique for Fiber Optic Gyroscope
,”
Optik
,
124
(
9
), pp.
784
792
.10.1016/j.ijleo.2012.02.008
11.
Dai
,
S.
,
Zheng
,
B.
, and
Dai
,
H.
,
2018
, “
Fiber Optic Gyro Temperature Error Compensation Based on Multi-Parameter Model
,” 2018 IEEE CSAA Guidance, Navigation and Control Conference (
CGNCC
),
Xiamen, China
, Aug. 10–12, pp.
1
6
.10.1109/GNCC42960.2018.9019094
12.
Yang
,
H.
,
Qiao
,
L.
,
Yang
,
Y.
,
Huang
,
W.
, and
Sun
,
S.
,
2019
, “
Thermally Induced Error Analysis and Suppression of Optic Fiber Delay Loop in the Different Variable Rate of Temperature
,”
Optik
,
193
, p.
162994
.10.1016/j.ijleo.2019.162994
13.
Li
,
X.
,
Zhang
,
C.
,
He
,
Z.
, and
Zhong
,
Z.
,
2009
, “
Temperature Errors of IFOG and Its Compensation in Engineering Application
,”
2009 9th International Conference on Electronic Measurement & Instruments
,
Beijing, China
, Aug. 16–19, pp.
2
230
2-234
.
14.
Ma
,
K.
,
Song
,
N.
,
Jin
,
J.
,
He
,
J.
, and
Zio
,
E.
,
2020
, “
Configuration Optimization in Miniature Interferometric Fiber-Optic Gyroscopes for Space Application
,”
IEEE Sens. J.
,
20
(
13
), pp.
7107
7117
.10.1109/JSEN.2020.2977584
15.
Song
,
N.
,
Cai
,
W.
,
Song
,
J.
,
Jin
,
J.
, and
Wu
,
C.
,
2015
, “
Structure Optimization of Small-Diameter Polarization-Maintaining Photonic Crystal Fiber for Mini Coil of Spaceborne Miniature Fiber-Optic Gyroscope
,”
Appl. Optics
,
54
(
33
), pp.
9831
9838
.10.1364/AO.54.009831
16.
Zhang
,
Y.
,
Li
,
X.
,
Liu
,
C.
,
Li
,
H.
, and
Du
,
S.
,
2020
, “
Investigation of Heat Source Position and Fiber Coil Size for Decreasing the FOG Scale Factor Temperature Error
,”
Optik
,
204
, p.
164203
.10.1016/j.ijleo.2020.164203
17.
Cai
,
H.
,
Yu
,
F.
,
Liao
,
M.
,
Li
,
X.
,
Wang
,
L.
,
Kuan
,
P.
,
Bi
,
W.
,
Wang
,
T.
,
Gao
,
W.
, and
Hu
,
L.
,
2020
, “
Thin-Diameter Polarization Maintaining Hollow-Core Photonic Bandgap Fiber for Fiber Optic Gyroscope
,”
Opt. Fiber Technol.
,
55
, p.
102141
.10.1016/j.yofte.2020.102141
18.
Minakuchi
,
S.
,
Sanada
,
T.
,
Takeda
,
N.
,
Mitani
,
S.
,
Mizutani
,
T.
,
Sasaki
,
Y.
, and
Shinozaki
,
K.
,
2015
, “
Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application
,”
J. Lightwave Technol.
,
33
(
12
), pp.
2658
2662
.10.1109/JLT.2014.2375198
19.
Huang
,
C.
,
Li
,
A.
,
Qin
,
F.
,
Tong
,
L.
, and
Wang
,
Z.
,
2019
, “
Temperature Error Compensation Method for Fiber Optic Gyroscope Considering Heat Transfer Delay
,” 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (
EITCE
),
Xiamen, China
, Oct. 18–20, pp.
1061
1067
.10.1109/EITCE47263.2019.9094814
20.
Liu
,
Y.
,
Yang
,
G.
, and
Yin
,
H.
,
2015
, “
Temperature Drift Modeling and Compensation of FOG Combined Extended Forgetting Factor Recursive Least Square (EFRLS)
,”
2015 34th Chinese Control Conference (CCC)
,
Hangzhou, China
, July 28–30, pp.
5035
5040
.
21.
Song
,
R.
,
Chen
,
X.
, and
Tang
,
C.
,
2014
, “
Study on Temperature Drift Modeling and Compensation of FOG Based on AFSA Optimizing LS-SVM
,”
Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference
,
Yantai, China
, Aug. 8–10, pp.
538
542
.10.1109/CGNCC.2014.7007280
22.
Zhao
,
S.
,
Guo
,
C.
,
Ke
,
C.
,
Zhou
,
Y.
, and
Shu
,
X.
,
2022
, “
Temperature Drift Compensation of Fiber Strapdown Inertial Navigation System Based on GSA-SVR
,”
Measurement
,
195
, p.
111117
.10.1016/j.measurement.2022.111117
23.
Liu
,
J.
,
Yuan
,
G.
, and
Chen
,
X.
,
2006
, “
Design of a New Type ATC System on the Light Source of FOG
,”
2006 6th World Congress on Intelligent Control and Automation
,
Dalian, China
, June 21–23, pp.
4951
4955
.10.1109/WCICA.2006.1713328
24.
Nazir
,
J.
,
Vivek
,
T.
, and
Jaisingh
,
T.
,
2016
, “
Temperature Stabilization in Fibre Optic Gyroscopes for High Altitude Aircraft
,”
Optik
,
127
(
20
), pp.
9701
9710
.10.1016/j.ijleo.2016.03.083
25.
Cao
,
Y.
,
Xu
,
W.
,
Lin
,
B.
,
Zhu
,
Y.
,
Meng
,
F.
,
Zhao
,
X.
,
Ding
,
J.
,
Lian
,
Z.
,
Xu
,
Z.
,
Yu
,
Q.
,
Xu
,
J.
,
Lou
,
S.
,
Wang
,
X.
,
Sheng
,
X.
, and
Liang
,
S.
,
2022
, “
A Method for Temperature Error Compensation in Fiber-Optic Gyroscope Based on Machine Learning
,”
Optik
,
256
, p.
168765
.10.1016/j.ijleo.2022.168765
26.
Zhao
,
S.
,
Zhou
,
Y.
, and
Shu
,
X.
,
2022
, “
Analysis of Fiber Optic Gyroscope Dynamic Error Based on CEEMDAN
,”
Opt. Fiber Technol.
,
69
, p.
102835
.10.1016/j.yofte.2022.102835
27.
Sundén
,
B.
, and
Xie
,
G.
,
2014
, “
Thermal Analysis of Air-Cooled Electronic Units With Integrated Offset Strip-Fin Heat Sink
,”
ASME J. Electron. Packag.
,
136
(
2
), p.
024501
.10.1115/1.4026538
28.
Putra
,
N.
,
Yanuar
, and
Iskandar
,
F. N.
,
2011
, “
Application of Nanofluids to a Heat Pipe Liquid-Block and the Thermoelectric Cooling of Electronic Equipment
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1274
1281
.10.1016/j.expthermflusci.2011.04.015
29.
Hollis
,
J.
,
Sharar
,
D. J.
, and
Bandhauer
,
T.
,
2021
, “
Effect of Phase Change Material on Dynamic Thermal Management Performance for Power Electronics Packages
,”
ASME J. Electron. Packag.
,
143
(
4
), p.
041111
.10.1115/1.4052669
30.
Nafis
,
B. M.
,
Iradukunda
,
A. C.
, and
Huitink
,
D.
,
2020
, “
System-Level Thermal Management and Reliability of Automotive Electronics: Goals and Opportunities Using Phase-Change Materials
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
041108
.10.1115/1.4047497
31.
Chougule
,
S. S.
,
Nirgude
,
V. V.
,
Shewale
,
S. P.
,
Pise
,
A. T.
,
Sahu
,
S. K.
, and
Shah
,
H.
,
2018
, “
Application of Paraffin Based Nanocomposite in Heat Pipe Module for Electronic Equipment Cooling
,”
Mater. Today: Proc.
,
5
(
11
), pp.
23333
23338
.10.1016/j.matpr.2018.11.070
32.
Sullivan
,
O.
,
Gupta
,
M. P.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
,
2012
, “
Array of Thermoelectric Coolers for on-Chip Thermal Management
,”
ASME J. Electron. Packag.
,
134
(
2
), p.
021005
.10.1115/1.4006141
33.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2015
, “
Thermal Performance of Nanofluid Charged Heat Pipe With Phase Change Material for Electronics Cooling
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021004
.10.1115/1.4028994
34.
Hao
,
J.
, and
Liu
,
B.
,
2011
, “
Design and Realization of Temperature Control System for FOG POS Based on DSP
,”
2011 Third International Conference on Measuring Technology and Mechatronics Automation
,
Shanghai, China
, Jan. 6–7, pp.
906
910
.10.1109/ICMTMA.2011.227
35.
Dzhashitov
,
V. E.
, and
Pankratov
,
W. M.
,
2014
, “
Using the Method of Elementary Balances for Analysis and Synthesis of Thermal Control System for FOG SINS Based on Peltier Modules
,”
Gyroscopy Navig.
,
5
(
4
), pp.
245
256
.10.1134/S2075108714040130
36.
Wang
,
H.
,
Xu
,
W.
, and
Ma
,
L.
,
2016
, “
Actively Controlled Thermal Management of Prismatic Li-Ion Cells Under Elevated Temperatures
,”
Int. J. Heat Mass Transfer
,
102
, pp.
315
322
.10.1016/j.ijheatmasstransfer.2016.06.033
37.
Zhao
,
Q.
,
Liu
,
Q.
,
Cao
,
N.
,
Guan
,
F.
,
Wang
,
S.
, and
Wang
,
H.
,
2021
, “
Stepped Generalized Predictive Control of Test Tank Temperature Based on Backpropagation Neural Network
,”
Alex. Eng. J.
,
60
(
1
), pp.
357
364
.10.1016/j.aej.2020.08.032
38.
Peng
,
Y.
,
Nagy
,
Z.
, and
Schlüter
,
A.
,
2019
, “
Temperature-Preference Learning With Neural Networks for Occupant-Centric Building Indoor Climate Controls
,”
Build. Environ.
,
154
, pp.
296
308
.10.1016/j.buildenv.2019.01.036
39.
Liu
,
H.
,
Yu
,
J.
, and
Wang
,
R.
,
2022
, “
Model Predictive Control of Portable Electronic Devices Under Skin Temperature Constraints
,”
Energy
,
260
, p.
125185
.10.1016/j.energy.2022.125185
40.
Li
,
G.
,
Madonski
,
R.
,
Lakomy
,
K.
,
Sun
,
L.
, and
Lee
,
K. Y.
,
2022
, “
Extended State Observer-Based Model Predictive Temperature Control of Mechanically Pumped Two-Phase Loop: An Experimental Study
,”
Appl. Therm. Eng.
,
213
, p.
118663
.10.1016/j.applthermaleng.2022.118663
41.
Bangert
,
P.
,
Busch
,
S.
,
Kramer
,
A.
, and
Schilling
,
K.
,
2016
, “
Preparation of Papers for IFAC Conferences & Symposia: Guidance, Navigation, and Control for Future Miniature Satellite Formations: Current Limitations and Impending Advancements
,”
IFAC-PapersOnLine
,
49
(
17
), pp.
290
295
.10.1016/j.ifacol.2016.09.050
42.
Jin
,
J.
,
He
,
J.
,
Song
,
N.
,
Ma
,
K.
, and
Kong
,
L.
,
2020
, “
A Compact Four-Axis Interferometric Fiber Optic Gyroscope Based on Multiplexing for Space Application
,”
J. Lightwave Technol.
,
38
(
23
), pp.
6655
6663
.10.1109/JLT.2020.3015713
43.
Kumar
,
K. D.
,
Godard
,
Abreu
,
N.
, and
Sinha
,
M.
,
2018
, “
Fault-Tolerant Attitude Control of Miniature Satellites Using Reaction Wheels
,”
Acta Astronaut.
,
151
, pp.
206
216
.10.1016/j.actaastro.2018.05.004
44.
Jin
,
J.
,
Xu
,
H.
,
Ma
,
D.
,
Lin
,
S.
, and
Song
,
N.
,
2012
, “
A Novel Interferometric Fiber Optic Gyroscope With Random Walk Faultdiagnosis for Space Application
,”
Opt. Laser. Eng.
,
50
(
7
), pp.
958
963
.10.1016/j.optlaseng.2012.02.003
You do not currently have access to this content.