Abstract

The present investigation delves into the failure model of cracking at the Cu/dielectric interface, specifically at the anode end of a copper interconnect that is triggered by electromigration. The study employs the continuous dislocation model to determine the stress field caused by interfacial mass diffusion that exists within and outside of the copper line. Apart from the anticipated tensile or compressive stress on the cathode or anode side, an anomalous stress singularity is identified at the interface between the dielectric layer and the anode end of the copper line. This singular stress distribution leads to cracking in the compressive portion of the dielectric layer at the anode end under the influence of electromigration. The theoretical predictions are in good agreement with experimental data, and a novel failure criterion akin to the stress intensity factor in fracture mechanics is formulated.

References

1.
Yao
,
Y.
,
Wang
,
Y.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
2015
, “
An Analytical Method to Predict Electromigration-Induced Finger-Shaped Void Growth in SnAgCu Solder Interconnect
,”
Scr. Mater.
,
95
, pp.
7
10
.10.1016/j.scriptamat.2014.08.028
2.
Zhang
,
P.
,
Xue
,
S.
, and
Wang
,
J.
,
2020
, “
New Challenges of Miniaturization of Electronic Devices: Electromigration and Thermomigration in Lead-Free Solder Joints
,”
Mater. Des.
,
192
, p.
108726
.10.1016/j.matdes.2020.108726
3.
Tu
,
K. N.
, and
Gusak
,
A. M.
,
2019
, “
A Unified Model of Mean-Time-to-Failure for Electromigration, Thermomigration, and Stress-Migration Based on Entropy Production
,”
J. Appl. Phys.
,
126
(
7
), p.
075109
.10.1063/1.5111159
4.
Liu
,
Y.
,
Gusak
,
A.
,
Jing
,
S.
, and
Tu
,
K. N.
,
2022
, “
Fast Prediction of Electromigration Lifetime With Modified Mean-Time-to-Failure Equation
,”
Mater. Lett.
,
325
, p.
132880
.10.1016/j.matlet.2022.132880
5.
Liang
,
C.-L.
,
Lin
,
Y.-S.
,
Kao
,
C.-L.
,
Tarng
,
D.
,
Wang
,
S.-B.
,
Hung
,
Y.-C.
,
Lin
,
G.-T.
, and
Lin
,
K.-L.
,
2020
, “
Electromigration Reliability of Advanced High-Density Fan-Out Packaging With Fine-Pitch 2-/2-μm L/S Cu Redistribution Lines
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
10
(
9
), pp.
1438
1445
.10.1109/TCPMT.2020.2997824
6.
Arnaud
,
L.
,
Tartavel
,
G.
,
Berger
,
T.
,
Mondon
,
F.
, and
Truche
,
R.
,
2001
, “
Analysis of Electromigration Extrusion Failure Mode in Damascene Copper Interconnects
,”
MRS Online Proc. Libr.
,
714
, pp.
011007
.10.1557/PROC-714-L9.1.1
7.
Arnaud
,
L.
,
Berger
,
T.
, and
Reimbold
,
G.
,
2003
, “
Evidence of Grain-Boundary Versus Interface Diffusion in Electromigration Experiments in Copper Damascene Interconnects
,”
J. Appl. Phys.
,
93
(
1
), pp.
192
204
.10.1063/1.1527711
8.
Korhonen
,
M. A.
,
Bo/Rgesen
,
P.
,
Tu
,
K. N.
, and
Li
,
C.-Y.
,
1993
, “
Stress Evolution Due to Electromigration in Confined Metal Lines
,”
J. Appl. Phys.
,
73
(
8
), pp.
3790
3799
.10.1063/1.354073
9.
Yao
,
W.
, and
Basaran
,
C.
,
2013
, “
Computational Damage Mechanics of Electromigration and Thermomigration
,”
J. Appl. Phys.
,
114
(
10
), p.
103708
.10.1063/1.4821015
10.
Sarychev
,
M. E.
,
Zhitnikov
,
Y. V.
,
Borucki
,
L.
,
Liu
,
C.-L.
, and
Makhviladze
,
T. M.
,
1999
, “
General Model for Mechanical Stress Evolution During Electromigration
,”
J. Appl. Phys.
,
86
(
6
), pp.
3068
3075
.10.1063/1.371169
11.
Yuexing
,
W.
,
Linwei
,
C.
,
Xiangyu
,
S.
,
Quanfeng
,
Z.
, and
Jie
,
Z.
,
2022
, “
Study of Electromigration-Induced Void Nucleation Problem Dominated by Bulk, Grain Boundary, and Interfacial Diffusion Based on an Improved Energy Approach
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
12
(
10
), pp.
1636
1644
.10.1109/TCPMT.2022.3212154
12.
Liu
,
H.
,
Zeng
,
F.
,
Tang
,
G.
,
Wang
,
G.
,
Song
,
C.
, and
Pan
,
F.
,
2013
, “
Significant Enhancement in Electromigration Resistance and Texture of Aluminum Films Using an Ultrathin Titanium Underlayer
,”
Acta Mater.
,
61
(
12
), pp.
4619
4624
.10.1016/j.actamat.2013.04.032
13.
Wang
,
Y.
,
Yao
,
Y.
,
Long
,
Z.
, and
Keer
,
L.
,
2020
, “
Energy Variation in Diffusive Void Nucleation Induced by Electromigration
,”
Acta Mech. Sin.
,
36
(
4
), pp.
866
872
.10.1007/s10409-020-00963-2
14.
Zhang
,
X.
,
2017
, “
A Continuum Model for Dislocation Pile-Up Problems
,”
Acta Mater.
,
128
, pp.
428
439
.10.1016/j.actamat.2017.01.057
15.
Chuang
,
T. J.
,
1982
, “
A Diffusive Crack‐Growth Model for Creep Fracture
,”
J. Am. Ceram. Soc.
,
65
(
2
), pp.
93
103
.10.1111/j.1151-2916.1982.tb10365.x
16.
Muskhelishvili
,
N. I.
,
1953
,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen, The Netherlands
.
17.
Anderson
,
T. L.
,
2017
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
18.
Wallin
,
K. R. W.
,
2005
,
Critical Assessment of the Standard ASTM E 399
,
J. ASTM Int.
,
2
(
4
), pp.
17
37
.
19.
Thrasher
,
S.
,
Capasso
,
C.
,
Zhao
,
L.
,
Hernandez
,
R.
,
Mulski
,
P.
,
Rose
,
S.
,
Nguyen
,
T.
, and
Kawasaki
,
H.
, 2001, “
Blech Effect in Single-Inlaid Cu Interconnects
,”
Proceedings of the IEEE 2001 International Interconnect Technology Conference
,
Burlingame, CA
, June 6, pp.
177
179
.
You do not currently have access to this content.