A system to reduce carbon dioxide emissions from combustion power plants is described. Unlike earlier proposals based on flue gas treatment, the problem is addressed prior to combustion by reforming the hydrocarbon fuel into H2 and CO2. Following separation, H2 is burned in place of the original fuel and the captured CO2 is liquefied and injected into the deep ocean at a depth sufficient to ensure effective containment, and to minimize damage to the marine environment. Calculations indicate moderate plant thermal efficiency and power cost penalties. In addition, the H2 production potential of this system may be exploited as a means to facilitate the transition from fossil fuels to future hydrogen energy systems.

This content is only available via PDF.
You do not currently have access to this content.