The flow of fuel and oxidant through a PEMFC is analyzed for prediction of maldistribution. Flow distribution of both fuel and oxidant from the port to the individual cells critically control the performance of a PEMFC stack in combination. The distribution of fluids was simulated by analytical approach utilizing flow channeling model of a manifold. A detailed numerical modeling is also carried out considering flow in each cell between the electrodes as flow through an equivalent porous medium offering identical resistance. The results show a close match between the analytical and numerical results. The parametric study reveals that flow rate and port size plays major role determining maldistribution of the fluids, which can be considerably skewed when large numbers of cells are stacked for larger power output.

1.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
,
1995
, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
142
, pp.
1
8
.
2.
Kim
,
J.
,
Lee
,
S. M.
, and
Sreenivasan
,
S.
,
1995
, “
Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation
,”
J. Electrochem. Soc.
,
142
, pp.
2670
2674
.
3.
Marr
,
C.
, and
Li
,
X.
,
1999
, “
Composition and Performance Modeling of Catalyst Layer in a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
77
, pp.
17
27
.
4.
Rowe
,
A.
, and
Li
,
X.
,
2001
, “
Mathematical Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
102
, pp.
82
96
.
5.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1991
, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
,
37
, pp.
1151
1163
.
6.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1992
, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
, pp.
2477
2490
.
7.
Springer
,
T. E.
,
Zawodinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
, pp.
2334
2341
.
8.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1993
, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
, pp.
3513
3526
.
9.
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
, pp.
1218
1225
.
10.
Nguyen
,
T. V.
, and
White
,
R. E.
,
1993
, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
140
, pp.
2178
2186
.
11.
Gurau
,
V.
,
Liu
,
H.
, and
Kakac
,
S.
,
1998
, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
,
44
, pp.
2410
2422
.
12.
Yi
,
J. S.
, and
Nguyen
,
T. V.
,
1998
, “
An Along-the-channel Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
145
, pp.
1149
1159
.
13.
Yi
,
J. S.
, and
Nguyen
,
T. V.
,
1999
, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
146
, pp.
38
45
.
14.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
,
2000
, “
Computational Fluid Dynamics Modelling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
147
, pp.
4485
4493
.
15.
Bajura
,
R. A.
, and
Jones
, Jr.,
E. H.
,
1976
, “
Flow Distribution Manifolds
,”
J. Fluids Eng.
,
98
, pp.
654
666
.
16.
Bassiouny
,
M. K.
, and
Martin
,
H.
,
1984
, “
Flow Distribution and Pressure Drop in Plate Heat Exchangers-I, U-Type Arrangement
,”
Chem. Eng. Sci.
,
39
, pp.
693
700
.
17.
Bassiouny
,
M. K.
, and
Martin
,
H.
,
1984
, “
Flow Distribution and Pressure Drop in Plate Heat Exchangers-II, Z-Type Arrangement
,”
Chem. Eng. Sci.
,
39
(
4
), pp.
701
704
.  
You do not currently have access to this content.