Thermoeconomic diagnosis procedures in the literature rely on the assumption that specific consumptions of resources in the components are the key to interpret the effects of malfunctions and then to trace a path towards the sources of anomalies. The main obstacle to a successful application of these approaches is represented by the actual interactions existing among components which cause a propagation of the alteration of component specific consumptions and therefore mask those effects that would allow a direct identification of the origin of malfunction. This paper presents an extensive discussion of potentialities and limits of diagnosis procedures proposed in the literature in distinguishing the effects induced by component interactions from those that are intrinsically generated by the anomaly, which is considered here as the main task to locate effectively causes of malfunctions in energy systems.

1.
Valero
,
A.
,
Correas
,
L.
,
Zaleta
,
A.
,
Lazzaretto
,
A.
,
Verda
,
V.
,
Reini
,
M.
, and
Rangel
,
V.
, 2002, “
On the Thermoeconomic Approach to the Diagnosis of Energy System Malfunctions. Part 1—The TADEUS Problem
,”
Proc. of ECOS 2002
,
G.
Tsatsaronis
,
M. J.
Moran
F.
Cziesla
, and
T.
Bruckner
, eds., Vol.
1
, Berlin,
July 3–5 pp.
215
223
.
2.
Aker
,
G. F.
, and
Saravanamuttoo
,
H. I. H.
, 1989, “
Predicting Gas Turbine Performance Behaviour Due to Compressor Fouling Using Computer Simulation Techniques
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
111
, pp.
343
350
.
3.
Diakunchak
,
I. S.
, 1992, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
114
, pp.
161
168
.
4.
Lakshminarasimha
,
A. N.
,
Boyce
,
M. P.
, and
Meher-Homji
,
C. B.
, 1994, “
Modelling and Analysis of Gas Turbine Performance Deterioration
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
46
52
.
5.
Bettocchi
,
R.
,
Spina
,
P. R.
, and
Benvenuti
,
E.
, 2003, “
Setup of an Adaptive Method for the Diagnosis of Gas Turbine Operating State by Using Test-Bench Measurements
,” ASME Paper 2000-GT-0309.
6.
Mathioudakis
,
K.
,
Stamatis
,
A.
, and
Bonataki
,
E.
, 2002, “
Allocating the Causes of Performance Deterioration in Combined Gas Turbine Plants
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
256
262
.
7.
Tsatsaronis
,
G.
, and
Winhold
,
M.
, 1985, “
Exergoeconomic Analysis and Evaluation of Energy-Conversion Plants. I: A New General Methodology
,”
Energy
0360-5442,
10
(
1
), pp.
81
94
.
8.
Evans
,
R. B.
, and
von Spakovsky
,
M. R.
, 1990, “
The Foundations of Engineering Functional Analysis (Part II)
,”
A Future for Energy, Proc. of FLOWERS’ 90
,
S. S.
Stecco
and
M. J.
Moran
, Eds.,
Pergamon
, New York, pp.
459
472
.
9.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
, 1996, “
A General Process-Based Methodology for Energy Costing
,”
Proc. of ASME AES Division
,
A. B.
Duncan
,
J.
Fiszdon
,
D.
O’Neal
, and
K. D.
Braven
, eds., Atlanta, GA, November 17–22, Vol.
36
, pp.
413
428
.
10.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
, 1999, “
On the Calculation of Efficiencies and Costs in Thermal systems
,”
Proc. of ASME AES Division
,
S. M.
Aceves
,
S.
Garimella
, and
R.
Peterson
, eds., Nashville, TN, November 14–19, Vol.
39
, pp.
421
430
.
11.
Stoppato
,
A.
, and
Lazzaretto
,
A.
, 1996, “
The Exergetic Analysis for Energy System Diagnosis
,”
Proc. of Engineering System Design and Analysis
,
A. B.
Sabir
,
C.
Bohatier
,
M. G.
Fertis
,
G.
Tsatsaronis
,
R. J.
Krane
, and
K. M.
Abbott
, eds., Montpellier, France, July 1–4, pp.
191
198
.
12.
Torres
,
C.
,
Valero
,
A.
,
Serra
,
L.
, and
Royo
,
J.
, 1999, “
Structural Theory and Thermoeconomic Diagnosis. Part 1—On Malfunction and Dysfunction Analysis
,”
Proc. of ECOS 1999
,
M.
Ishida
,
G.
Tsatsaronis
,
M. J.
Moran
, and
H.
Kataoka
, eds., Tokyo, June 8–10, pp.
368
373
.
13.
Verda
,
V.
,
Serra
,
L.
, and
Valero
,
A.
, 2002, “Thermoeconomic Diagnosis: Zooming Strategy Applied to Highly Complex Energy Systems. Part l—Detection and Localization of Anomalies,” ASME Paper IMECE2002-33183.
14.
Verda
,
V.
,
Serra
,
L.
, and
Valero
,
A.
, 2002, “
Thermoeconomic Diagnosis: Zooming Strategy Applied to Highly Complex Energy Systems. Part 2—On the Choice of the Productive Structure
,” ASME Paper IMECE2002-33185.
15.
Valero
,
A.
,
Lozano
,
M. A.
, and
Torres
,
C.
, 1990, “
On Causality in Organized Energy Systems: III. Theory of Perturbations
,”
A Future for Energy, Proc. of FLOWERS’90
,
S. S.
Stecco
and
M. J.
Moran
, eds.,
Pergamon
, New York, pp.
409
420
.
16.
Reini
,
M.
, l994, “
Analisi e Sviluppo dei Metodi Termoeconomici per lo Studio degli Impianti di Conversione dell’Energia
,” Ph.D. thesis, Univ. of Padova (in Italian).
17.
Reini
,
M.
,
Lazzaretto
,
A.
, and
Macor
,
A.
, 1995, “
Average Structural and Marginal Costs as Result of a Unified Formulation of the Thermoeconomic Problem
,”
Proc. of Second Law Analysis of Energy Systems: Towards the 21st Century
,
E.
Sciubba
and
M. J.
Moran
, eds., Rome, pp.
307
323
.
18.
Lazzaretto
,
A.
,
Macor
,
A.
,
Mirandola
,
A.
,
Stoppato
,
A.
, and
Donatini
,
F.
, 1997, “
Analysis and Diagnosis of the Operation Performances of a Steam Power Plant
,”
Proc. of 14th Brazilian Congress of Mechanical Engineering
, Sao Paulo, Brazil.
19.
Stoppato
,
A.
,
Carraretto
,
C.
, and
Mirandola
,
A.
, 2001, “
A Diagnosis Procedure for Energy Conversion Plants. Part 1—Description of the Method
,” ASME Paper IMECE2001/AES-23658.
20.
Valero
,
A.
,
Correas
,
L.
,
Zaleta
,
A.
,
Lazzaretto
,
A.
,
Verda
,
V.
,
Reni
,
M.
, and
Rangel
,
V.
, 2002, “
On the Thermoeconomic Approach to the Diagnosis of Energy System Malfunctions. Part 2—Malfunction Definitions and Assessment
,”
Proc. of ECOS 2002
,
G.
Tsatsaronis
,
M. J.
Moran
,
F.
Cziesla
, and
T.
Bruckner
, eds., Berlin, July 3–5, Vol.
1
, pp.
224
233
.
21.
Reini
,
M.
, and
Taccani
,
R.
, 2002, “
On Energy Diagnosis of Steam Power Plants: A Comparison Among Three Global Losses Formulation
,”
Int. J. Appl. Thermodyn.
,
5
(
4
), pp.
177
188
.
22.
Toffolo
,
A.
, and
Lazzaretto
,
A.
, 2003, “
A New Thermoeconomic Method for the Location of Causes of Malfunctions in Energy Systems
,” ASME Paper IMECE2003-42689.
23.
Kotas
,
T. J.
, 1980, “
Exergy Criteria of Performance for Thermal Plant
,”
Int. J. Heat Mass Transfer
0017-9310,
2
, pp.
147
163
.
24.
Stecco
,
S. S.
, and
Manfrida
,
G.
, 1982, “
Second Law Analysis of Composite Power Plants
,”
Proc. of the 17th IECEC Conference
, Los Angeles.
25.
Sorin
,
M. V.
,
Le Goff
,
P.
, and
Brodyanskii
,
V. M.
, 1992, “
Thermodynamic Optimization and Integration of Processes Using a General Formula for the Efficiency
,”
Proc. of ECOS’92
, Zaragoza, (ASME Book No.100331).
26.
Lazzaretto
,
A.
,
Macor
,
A.
,
Mirandola
,
A.
, and
Stoppato
,
A.
, 1998, “
Potentialities and Limits of Exergoeconomic Methods in the Design, Analysis and Diagnosis of Energy Conversion Plants
,”
Proc. of Advances in Energy Studies
,
S.
Ulgiati
, ed., Porto Venere, Italy, pp.
515
530
.
27.
Lozano
,
M. A.
, and
Valero
,
A.
, 1993, “
Theory of the Exergetic Cost
,”
Energy
0360-5442,
18
(
9
), pp.
939
960
.
28.
Cziesla
,
F.
, and
Tsatsaronis
,
G.
, 2003, “
Exergoeconomic Assessment of the Performance Degradation in a Power Plant at Full and Partial Load
,” ASME Paper IMECE2003-43856.
29.
Zaleta
,
A.
,
Rangel
,
V.
, and
Valero
,
A.
, 2003, “
On the Thermoeconomic Approach to the Diagnosis of Energy System Malfunctions. Part 6—Model of Thermodynamic Reconciliation for the Diagnosis of Power Plants
,”
Proc. of ECOS 2003
,
N.
Houbak
,
B.
Elmegaard
,
B.
Qvale
, and
M. J.
Moran
, eds., Copenhagen, June 30–July 2, Vol.
1
, pp.
365
372
.
You do not currently have access to this content.