This paper deals with a high-pressure gas pipeline optimization, where the problem is to find the design properties of the pipelines and necessary compressor stations to satisfy customer requirements, using available supply gas and storage capacities. The considered objective function is the total annualized cost, including the investment and operating costs. The binary variables used to represent the flow direction of pipelines lead to a mixed integer nonlinear programming problem, solved by using the standard branch and bound solver in GAMS. The optimization strategy provides the main design parameters of the pipelines (diameters, pressures, and flow rates) and the characteristics of compressor stations (location, suction pressure, pressure ratio, station throughput, fuel consumption, and station power consumption) to satisfy customer requirements.

1.
Riva
,
A.
,
D’Angelosante
,
S.
, and
Trebeschi
,
C.
, 2006, “
Natural Gas and the Environmental Results of Lifecycle Assessment
,”
Energy
0360-5442,
31
(
1
), pp.
138
148
.
2.
De Wolf
,
D.
, and
Smeers
,
Y.
, 2000, “
The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm
,”
Manage. Sci.
0025-1909,
46
(
11
), pp.
1454
1465
.
3.
Tian
,
S.
, and
Adewumi
,
M. A.
, 1994, “
Development of Analytical Design Equation for Gas Pipelines
,”
SPE Prod. Facil.
1064-668X,
9
(
2
), pp.
100
106
.
4.
Lewandowski
,
A.
, 1994, “
Object-Oriented Modelling of the Natural Gas Pipeline Network
,”
26th Annual Meeting of Pipeline Simulation Interest Group
, San Diego, CA, Oct. 13–14.
5.
Osiadacz
,
A. J.
, 1994, “
Dynamic Optimization of High Pressure Gas Networks Using Hierarchical Systems Theory
,”
26th Annual Meeting of Pipeline Simulation Interest Group
, San Diego, CA, Oct. 13–14.
6.
Surry
,
P. D.
,
Radcliffe
,
N. J.
, and
Boyd
,
I. D.
, 1995, “
A Multi-Objective Approach to Constrained Optimization of Gas Supply Networks: The COMOGA Method
,”
Lecture Notes in Computer Science, Evolutionary Computing
, Vol.
993
,
Springer
,
Berlin
, pp.
166
180
.
7.
Mohitpour
,
M.
,
Thompson
,
W.
, and
Asante
,
B.
, 1996, “
The Importance of Dynamic Simulation on the Design and Optimization of Pipeline Transmission Systems
,”
Proceedings of the ASME International Pipeline Conference
, Calgary, Canada, Vol.
2
, pp.
1183
1188
.
8.
Boyd
,
E. A.
,
Scott
,
L. R.
, and
Wu
,
S. S.
, 1997, “
Evaluating the Quality of Pipeline Optimization Algorithms
,”
29th Annual Meeting of Pipeline Simulation Interest Group
, Tucson, AZ, Oct. 15–17.
9.
Costa
,
A. L. H.
,
de Medeiros
,
J. L.
, and
Pessoa
,
F. L. P.
, 1998, “
Steady-State Modelling and Simulation of Pipeline Networks for Compressible Fluids
,”
Braz. J. Chem. Eng.
0104-6632,
15
(
4
), pp.
344
357
.
10.
Sun
,
C. K.
,
Varanon
,
U.
,
Chan
,
C. W.
, and
Tontiwachwuthikul
,
P.
, 2000, “
An Integrated Expert System/Operations Research Approach for Optimization of Natural Gas Pipeline Operations
,”
Eng. Applic. Artif. Intell.
0952-1976,
13
(
4
), pp.
465
475
.
11.
Song
,
W.
,
Huh
,
D.
,
Lee
,
J.
, and
Kwon
,
O.
, 1998, “
Optimization of Pipeline Networks With a Hybrid MCST-CD Networking Model
,”
SPE Prod. Facil.
1064-668X,
3426
(
213
), pp.
213
219
.
12.
Rios-Mercado
,
R. Z.
,
Wu
,
S.
,
Scott
,
L. R.
, and
Boyd
,
E. A.
, 2002, “
A Reduction Technique for Natural Gas Transmission Network Optimization Problems
,”
Ann. Operat. Res.
0254-5330,
117
, pp.
217
234
.
13.
Martinez-Romero
,
N.
,
Osorio-Peralta
,
O.
, and
Santan-Vite
,
I.
, 2002, “
Natural Gas Network Optimization and Sensibility Analysis
,”
Proceedings of the SPE International Petroleum Conference and Exhibition of Mexico
, pp.
357
370
.
14.
Cobos-Zaleta
,
D.
, and
Rios-Mercado
,
R. Z.
, 2002, “
A MINLP Model for a Minimizing Fuel Consumption on Natural Gas Pipeline Networks
,”
XI Latin-Ibero-American Conference on Operations Research
, Concepción, Chile, Oct. 27–31.
15.
Mora
,
T.
, and
Ulieru
,
M.
, 2005, “
Minimization of Energy Use in Pipeline Operations—An Application to Natural Gas Transmission Systems
,”
31st Annual Conference of IEEE
,
Industrial Electronics Society (IECON)
, pp.
2190
2197
.
16.
Chauvelier-Alario
,
C.
,
Mathieu
,
B.
, and
Toussaint
,
C.
, 2006, “
Decision Making Software for Gaz de France Distribution Network Operators: Carpathe
,”
23rd World Gas Conference
, Amsterdam, Netherlands.
17.
André
,
J.
,
Bonnans
,
F.
, and
Cornibert
,
L.
, 2006, “
Planning Reinforcement on Gas Transportation Networks With Optimization Methods
,”
Process Operation Research Models and Methods in the Energy Sector Conference, ORMMES
, Coimbra, Portugal.
18.
Padberg
,
M.
, and
Rinaldi
,
G.
, 1991, “
A Branch-and-Cut Algorithm for the Resolution of Large Scale Symmetric Traveling Salesman Problems
,”
SIAM Rev.
0036-1445,
33
(
1
), pp.
60
100
.
19.
Hao
,
J. K.
, and
Dorne
,
R.
, 1996, “
Study of Genetic Search for the Frequency Assignment Problem
,”
Lecture Notes in Computer Science
, Vol.
1063
,
Springer
,
Berlin
, p.
333
.
20.
Lee
,
S.
, and
Grossmann
,
I. E.
, 2003, “
Global Optimization of Nonlinear Generalized Disjunctive Programming With Bilinear Equality Constraints: Applications to Process Networks
,”
Comput. Chem. Eng.
0098-1354,
27
(
11
), pp.
1557
1575
.
21.
Teh
,
Y. S.
, and
Rangaiah
,
G. P.
, 2003, “
Tabu Search for Global Optimization of Continuous Functions With Application to Phase Equilibrium Calculations
,”
Comput. Chem. Eng.
0098-1354,
27
(
11
), pp.
1665
1679
.
22.
Jain
,
A.
,
Srinivasalu
,
S.
, and
Bhattacharjya
,
R. K.
, 2005, “
Determination of an Optimal Unit Pulse Response Function Using Real-Coded Genetic Algorithms
,”
J. Hydrol.
0022-1694,
303
(
1–4
), pp.
199
214
.
23.
Zamora
,
M. Z.
, and
Grossmann
,
I. E.
, 1998, “
A Global MINLP Optimization Algorithm for the Synthesis of Heat Exchanger Networks With No Stream Splits
,”
Comput. Chem. Eng.
0098-1354,
22
(
3
), pp.
367
384
.
24.
Guillén
,
G.
,
Badell
,
M.
,
Espuña
,
A.
, and
Puigjaner
,
L.
, 2006, “
Simultaneous Optimization of Process Operations and Financial Decisions to Enhance the Integrated Planning/Scheduling of Chemical Supply Chains
,”
Comput. Chem. Eng.
0098-1354,
30
(
3
), pp.
421
436
.
25.
Ravemark
,
D. E.
, and
Rippin
,
D. W. T.
, 1998, “
Optimal Design of a Multi-Product Batch Plant
,”
Comput. Chem. Eng.
0098-1354,
22
(
1–2
), pp.
177
183
.
26.
Dedieu
,
S.
,
Pibouleau
,
L.
,
Azzaro-Pantel
,
C.
, and
Domenech
,
S.
, 2003, “
Design and Retrofit of Multiobjective Batch Plants Via a Multicriteria Genetic Algorithm
,”
Comput. Chem. Eng.
0098-1354,
27
(
12
), pp.
1723
1740
.
27.
Montagna
,
J. M.
, and
Vecchietti
,
A. R.
, 2003, “
Retrofit of Multiproduct Batch Plants Through Generalized Disjunctive Programming
,”
Math. Comput. Modell.
0895-7177,
38
(
5–6
), pp.
465
479
.
28.
Wolpert
,
D. H.
, and
Macready
,
W. G.
, 1997, “
No Free Lunch Theorems for Optimization
,”
IEEE Trans. Evol. Comput.
1089-778X,
1
(
1
), pp.
67
82
.
29.
Hao
,
J. K.
,
Galinier
,
P.
, and
Habib
,
M.
, 1999, “
Métaheuristiques pour l’Optimisation Combinatoire et l’Affectation Sous Contrainte
,”
Revue d’Intelligence Artificielle
,
13
(
2
), pp.
283
324
.
30.
Grossmann
,
I. E.
, 2002, “
Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques
,”
Optim. Eng.
1389-4420,
3
, pp.
227
252
.
31.
Biegler
,
L. T.
, and
Grossmann
,
I. E.
, 2004, “
Retrospective on Optimization
,”
Comput. Chem. Eng.
0098-1354,
28
, pp.
1169
1192
.
32.
Ponsich
,
A.
, 2005, “
Stratégies d’optimisation mixte en Génie des Procédés—Application à la conception d’ateliers discontinus
,” Ph.D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France.
33.
Gupta
,
O. K.
, and
Ravindran
,
V.
, 1985, “
Branch and Bound Experiments in Convex Nonlinear Integer Programming
,”
Manage. Sci.
0025-1909,
31
(
12
), pp.
1533
1546
.
34.
Ryoo
,
H. S.
, and
Sahinidis
,
N. V.
, 1995, “
Global Optimization of Nonconvex NLPs and MINLPs With Applications in Process Design
,”
Comput. Chem. Eng.
0098-1354,
19
(
5
), pp.
551
566
.
35.
Smith
,
E. M. B.
, and
Pantelides
,
C. C.
, 1999, “
A Symbolic Reformulation/Spatial Branch-and-Bound Algorithm for the Global Optimization of Nonconvex MINLPs
,”
Comput. Chem. Eng.
0098-1354,
23
(
4–5
), pp.
457
478
.
36.
Geoffrion
,
A. M.
, 1972, “
Generalized Benders Decomposition
,”
J. Optim. Theory Appl.
0022-3239,
10
(
4
), pp.
237
260
.
37.
Duran
,
M. A.
, and
Grossmann
,
I. E.
, 1986, “
An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs
,”
Mathematical Programming: Series A and B
,
36
(
3
), pp.
307
339
.
38.
Westerlünd
,
T.
, and
Petterson
,
F.
, 1995, “
An Extended Cutting Plane Method for Solving Convex MINLP Problems
,”
Comput. Chem. Eng.
0098-1354,
19
(
1
), pp.
S131
S136
.
39.
Raman
,
R.
, and
Grossmann
,
I. E.
, 1994, “
Modeling and Computational Techniques for Logic Based Integer Programming
,”
Comput. Chem. Eng.
0098-1354,
18
(
7
), pp.
563
578
.
40.
Brooke
,
A.
,
Kendrick
,
D.
,
Meeraus
,
A.
, and
Raman
,
R.
, 2004, GAMS: A User’s Guide, GAMS Development Corporation, Washington, DC.
41.
Leyffer
,
S.
, 1999, User Manual for MINLP_BB, University of Dundee, Numerical Analysis Report No. NA/XXX.
42.
Westerlünd
,
T.
, and
Lundqvist
,
K.
, 2003, ALPHA-ECP, version 5.04, an interactive MINLP-solver based on the extended cutting plane method, Process Design Laboratory, Abo Akademi University, Report No. 01-178-A.
43.
Kirkpatrick
,
S.
,
Gelatt
,
J. C. D.
, and
Vecchi
,
M. P.
, 1982, “
Optimization by Simulated Annealing
,” IBM Research, Report No. RC9355.
44.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
45.
Beyer
,
H. G.
, and
Schwefel
,
H. P.
, 2002, “
Evolution Strategies, a Comprehensive Introduction
,”
Nat. Comput.
1567-7818,
1
(
1
), pp.
3
52
.
46.
Yang
,
Y. W.
,
Xu
,
J. F.
, and
Soh
,
C. K. N.
, 2006, “
An Evolutionary Programming Algorithm For Continuous Global Optimization
,”
Eur. J. Oper. Res.
0377-2217,
168
(
2
), pp.
354
369
.
47.
Osiadacz
,
A. J.
, 1987,
Simulation and Analysis of Gas Networks
,
E. & F.N.
,
Spon, London
.
48.
Tabkhi
,
F.
, 2007, “
Optimisation de réseaux de transport de gaz
,” Ph.D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France.
49.
Mohring
,
J.
,
Hoffmann
,
J.
,
Halfmann
,
T.
,
Zemitis
,
A.
,
Basso
,
G.
, and
Lagoni
,
P.
, 2004, “
Automated Model Reduction of Complex Gas Pipeline Networks
,”
36th Annual Meeting of Pipeline Simulation Interest Group
, Palm Springs, CA.
50.
Romeo
,
E.
,
Royo
,
C.
, and
Monzon
,
A.
, 2002, “
Improved Explicit Equations for Estimation of the Friction Factor in Rough and Smooth Pipes
,”
Chem. Eng. J.
0300-9467,
86
(
3
), pp.
369
374
.
51.
Menon
,
E. S.
, 2005,
Gas Pipeline Hydraulics
,
CRC
,
Boca Raton, FL
/
Taylor & Francis
,
London
.
52.
Smith
,
J. M.
, and
Van Ness
,
H. C.
, 1988,
Introduction to Chemical Engineering Thermodynamics
, 4th ed.,
McGraw-Hill
,
Singapore
.
53.
Abbaspour
,
M.
,
Chapman
,
K. S.
, and
Krishnaswami
,
P.
, 2005, “
Nonisothermal Compressor Station Optimization
,”
ASME J. Energy Resour. Technol.
0195-0738,
127
(
2
), pp.
131
141
.
54.
Odom
,
F. M.
, 1990, “
Tutorials on Modelling of Gas Turbine Driven Centrifugal Compressors
,”
22nd Annual Meeting of Pipeline Simulation Interest Group
, Baltimore, MD.
55.
Pugnet
,
J. M.
, 1999, “
Pompage des compresseurs, Techniques de l’ingénieur
,”
Génie mécanique
,
BL2
(
BM 4 182
), pp.
BM4182.1
BM4182.18
.
56.
Wu
,
S.
,
Rios-Mercado
,
R. Z.
,
Boyd
,
E. A.
, and
Scott
,
L. R.
, 2000, “
Model Relaxations for the Fuel Cost Minimization of Steady-State Gas Pipeline Networks
,”
Math. Comput. Model.
,
31
(
2–3
), pp.
197
220
.
57.
Edgar
,
T. F.
, and
Himmelblau
,
D. M.
, 2001,
Optimization of Chemical Processes
,
McGraw-Hill
,
Singapore
.
You do not currently have access to this content.