In this paper, a new constant rate solution for asymmetrically fractured wells was proposed to analyze the effect of fracture asymmetry on type curves. Calculative results showed that for a small wellbore storage coefficient or for the low fracture conductivity, the effect of fracture asymmetry on early flow was very strong. The existence of the fracture asymmetry would cause bigger pressure depletion and make the starting time of linear flow occur earlier. Then, new type curves were established for different fracture asymmetry factor and different fracture conductivity. It was shown that a bigger fracture asymmetry factor and low fracture conductivity would prolong the time of wellbore storage effects. Therefore, to reduce wellbore storage effects, it was essential to keep higher fracture conductivity and fracture symmetry during the hydraulic fracturing design. Finally, a case example is performed to demonstrate the methodology of new type curves analysis and its validation for calculating important formation parameters.

References

1.
Mcguire
,
W. J.
, and
Sikora
,
V. J.
,
1960
, “
The Effect of Vertical Fractures on Well Productivity
,” SPE Paper No. 1618-G.
2.
Prats
,
M.
,
1961
, “
Effect of Vertical Fracture on Reservoir Behavior-Compressible Fluid Case
,” 36th Annual Fall Meeting of SPE, Dallas, TX, Oct. 8–11, Paper No. SPE 98.
3.
Raghavan
,
R.
,
Cady
,
G. V.
, and
Ramey
,
H. J.
,
1972
, “
Well Test Analysis for Vertically Fractured Wells
,”
J. Pet. Technol.
,
21
, pp.
1014
1019
.10.2118/3013-PA
4.
Ramey
,
H. J.
, Jr.
, and
Gringarten
,
A. C.
,
1975
, “
Effect of High Volume Vertical Fractures on Geothermal Steam Well Behavior
,”
Proceedings of Second United Nations Symposium on the Use and Development of Geothermal Energy
,
San Francisco
, CA, May 20–29.
5.
Gringarten
,
A. C.
,
Ramey
,
H. J.
, Jr.
, and
Raghavan
,
R.
,
1975
, “
Applied Pressure Analysis for Fractured Wells
,”
J. Pet. Technol.
,
27
, pp.
887
892
.10.2118/5496-PA
6.
Cinco-Ley
,
H.
,
Samaniego-V.
,
F.
, and
Dominguez
,
N.
,
1978
, “
Transient Pressure Behavior for a Well With a Finite-Conductivity Vertical Fracture
,”
SPE J.
,
8
(
4
), pp.
253
264
.10.2118/6014-PA
7.
Cinco-Ley
,
H.
, and
Fernando Samaniego-V.
,
F.
,
1981
, “
Transient Pressure Analysis for Fractured Wells
,”
SPE J.
,
10
(
9
), pp.
1749
1766
.10.2118/7490-PA
8.
Ozkan
,
E.
,
1988
, “
Performance of Horizontal Wells
,” Ph.D. Dissertation,
University of Tulsa
, Tulsa, OK.
9.
Tiab
,
D.
,
1995
, “
Analysis of Pressure Derivative Without Type-Curve Matching-Skin and Wellbore Storage
,”
J. Pet. Sci. Eng
,
12
(
3
), pp.
171
181
.10.1016/0920-4105(94)00040-B
10.
Agarwal
,
R. G.
,
Gardner
,
D. C.
,
Kleinsteiber
,
S. W.
, and
Fussell
,
D. D.
,
1998
, “
Analyzing Well Production Data Using Combined Type Curve and Decline Curve Concepts
,”
SPE Form. Eval.
,
2
(
5
), pp.
478
486
.10.2118/49222-MS
11.
Pratikno
,
H.
,
Rushing
,
J. A.
, and
Blasingame
,
T. A.
,
2003
, “
Decline Curve Analysis Using Type Curves-Fractured Wells
,”
SPE Annual Technical Conference and Exhibition
,
Denver
, CO, Oct. 5–8, Paper No. SPE 84287.
12.
Tiab
,
D.
,
2005
, “
Analysis of Derivative Data of Hydraulically Fractured Wells by the Tiab's Direct Synthesis Technique
,”
J. Pet. Sci. Eng.
,
49
(
1-2
), pp.
1
21
.10.1016/j.petrol.2005.07.001
13.
Lei
Z. D.
,
Cheng
S. Q.
, and
Li
X. F.
,
2007
, “
A New Method for Prediction of Productivity of Fractured Horizontal Wells Based on Non-Steady Flow
,”
J. Hydrodyn., Ser. B
,
19
(
4
), pp.
494
500
.10.1016/S1001-6058(07)60145-0
14.
Jacques
,
H. A.
,
2008
, “
Simplified Analytical Method for Estimating the Productivity of a Horizontal Well Producing at Constant Rate or Constant Pressure
,”
J. Pet. Sci. Eng.
,
64
(
1
), pp.
77
87
.10.1016/j.petrol.2008.11.002
15.
Lu
,
J.
,
Ghedan
,
S.
,
Zhu
,
T.
, and
Tiab
,
D.
,
2011
, “
Non-Darcy Binomial Deliverability Equations for Partially Penetrating Vertical Gas Wells and Horizontal Gas Wells
,”
ASME J. Energy Resour. Technol.
,
133
, p.
043101
.10.1115/1.4005240
16.
Tiab
,
D.
,
Lu
,
J.
,
Nguyen
,
H.
, and
Owayed
,
J.
,
2010
, “
Evaluation of Fracture Asymmetry of Finite-Conductivity Fractured Wells
,”
ASME J. Energy Resour. Technol.
,
132
, p.
012901
.10.1115/1.4000700
17.
Wang
,
L.
,
Wang
,
X. D.
,
Ding
,
X. M.
,
Zhang
,
L.
, and
Li
,
C.
, “
Rate Decline Curves Analysis of a Vertical Fractured Well With Fracture Face Damage
,”
ASME J. Energy Resour. Technol.
,
134
, p.
032803
.10.1115/1.4006865
18.
Bakhbergen
,
E. B.
,
Aidarkhan
,
K.
,
Andrew
K. W.
, and
Mikhail
,
P.
, “
Numerical Modeling of the Effects of Disproportionate Permeability Reduction Water-Shutoff Treatments on Water Coning
,”
ASME J. Energy Resour. Technol.
,
135
, p.
011101
.10.1115/1.4007913
19.
Ibrahim
,
M. M.
,
Jia
,
H.
,
Hisham
A.
, and
Nasr-El-Din
, “
Experimental Analysis of CO2 Injection on Permeability of Vuggy Carbonate Aquifers
,”
ASME J. Energy Resour. Technol.
,
135
, p.
013301
.10.1115/1.4007799
20.
Rahman
,
M. K.
,
Salim
,
M. M.
, and
Rahman
,
M. M.
Analytical Modeling of Non-Darcy Flow-Induced Conductivity Damage in Propped Hydraulic Fractures
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
043101
.10.1115/1.4007658
21.
Jerzy
,
S.
, and
Stanislaw
,
N.
Computer Modeling of Coal Bed Methane Recovery in Coal Mines
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032804
.10.1115/1.4007003
22.
Crawford
,
P. B.
, and
Landrum
,
B. L.
,
1955
, “
Effect of Unsymmetrical Vertical Fractures on Procuction Capacity
,”
Trans. AIME
,
204
, pp.
251
254
. Available at: http://www.onepetro.org/mslib/app/Preview.do?paperNumber=SPE-000433-G&societyCode=SPE
23.
Narasimhan
,
T. N.
, and
Palen
,
W. A.
,
1979
, “
A Purely Numerical Approach for Analyzing Fluid Flow to a Well Inercepting a Vertical Fracture
,” SPE California Regional Meeting, Ventura, CA, Paper No. SPE 7983.
24.
Bennet
,
C. O.
,
1983
, “
Influence of Fracture Heterogeneity and Wing Length on the Response of Vertically Fractured Wells
,”
SPE J.
,
23
, pp.
219
230
.10.2118/9886-PA
25.
Resurreicão
,
C. E. S.
, and
Fernando
,
R.
,
1991
, “
Transient Rate Behavior of Finite-Conductivity Asymmetrically Fractured Wells Producing at Constant Pressure
,”
Annual Technical Conference and Exhibition
,
Dallas, TX
, Paper No. SPE 22657.
26.
Rodriguez
,
F.
,
Cinco-Ley
,
H.
, and
Samaniego
,
V. F.
,
1992
, “
Evaluation of Fracture Asymmetry of Finite-Conductivity Fractured Wells
,”
SPE Form. Eval.
,
8
(
2
), pp.
233
239
.10.2118/20583-PA
27.
Berumen
,
S.
,
Tiab
,
D.
, and
Rodriguez
,
F.
,
2000
, “
Constant Rate Solutions for a Fractured Well With an Asymmetric Fracture
,”
J. Pet. Sci. Eng.
,
25
, pp.
49
58
.10.1016/S0920-4105(99)00053-4
28.
Nashawi
,
I. S.
,
2006
, “
Constant-Pressure Well Test Analysis of Finite-Conductivity Hydraulically Fractured Gas Wells Infuenced by Non-Darcy Flow Effects
,”
J. Pet. Sci. Eng.
,
53
, pp.
225
238
.10.1016/j.petrol.2006.06.006
29.
Cinco-Ley
,
H.
, and
Meng
,
H. Z.
,
1989
, “
Pressure Transient Analysis of Wells With Finite Conductivity Vertical Fractures in Double Porosity Reservoirs
,”
Annual Technical Conference and Exhibition
,
Houston, TX
, Paper No. SPE 18172.
30.
Wang
X. D.
,
2006
,
Mechanic Basis of Fluids Flow in Porous Media [M]
,
Petroleum Industry Publications
,
Beijing
.
You do not currently have access to this content.