The National Energy Technology Laboratory (NETL) has explored chemical looping in its 50 kWth facility using a number of oxygen carriers. In this work, the results for methane conversion in the fuel reactor with a hematite iron ore as the oxygen carrier are analyzed. The experimental results are compared to predictions using CPFD's barracuda computational fluid dynamics (CFD) code with kinetics derived from the analysis of fixed bed data. It has been found through analytical techniques from thermal gravimetric analysis data as well as the same fixed bed data that the kinetics for the methane–hematite reaction follows a nucleation and growth or Johnson–Mehl–Avrami (JMA) reaction mechanism. barracuda does not accept nucleation and growth kinetics; however, there is enough sufficient variability of the solids dependence within the software such that the nucleation and growth behavior can be mimicked. This paper presents the method to develop the pseudo-JMA kinetics for barracuda extracted from the fixed bed data and then applies these values to the fuel reactor data to compare the computational results to experimental data obtained from 50 kWth unit for validation. Finally, a fuel reactor design for near complete conversion is proposed.

References

1.
Breault
,
R. W.
,
Shadle
,
L. J.
,
Spenik
,
J. L.
, and
Huckaby
,
E. D.
,
2014
, “
CO2 Adsorption: Experimental Investigation and CFD Reactor Model Validation
,”
J. Comput. Environ. Sci.
,
2014
, p.
503194
.
2.
Ciferno
,
J.
,
Litynski
,
J.
,
Brickett
,
L.
,
Murphy
,
J.
,
Munson
,
R.
,
Zaremsky
,
C.
,
Marano
,
J.
, and
Strock
,
J.
,
2010
, “
DOE/NETL Advanced CO2 Capture R&D Program: Technology Update
,”
U.S. Department of Energy
, Morgantown, WV.
3.
Figueroa
,
J. D.
,
Fout
,
T.
,
Plasynski
,
S.
,
McIlvried
,
H.
, and
Srivastava
,
R. D.
,
2008
, “
Advances in CO2 Capture Technology—The U.S. Department of Energy’s Carbon Sequestration Program
,”
Int. J. Greenhouse Gas Control
,
2
(
1
), pp.
9
20
.
4.
Mahalatkar
,
K.
,
Kuhlman
,
J.
,
Huckaby
,
E. D.
, and
O’Brien
,
T.
,
2011
, “
Computational Fluid Dynamic Simulations of Chemical Looping Fuel Reactors Utilizing Gaseous Fuels
,”
Chem. Eng. Sci.
,
66
(
3
), pp.
469
479
.
5.
Mattisson
,
T.
,
Lyngfelt
,
A.
, and
Cho
,
P.
,
2001
, “
The Use of Iron Oxide as an Oxygen Carrier in Chemical-Looping Combustion of Methane With Inherent Separation of CO2
,”
Fuel
,
80
(
13
), pp.
1953
1962
.
6.
Son
,
S.
, and
Kim
,
S.
,
2006
, “
Chemical-Looping Combustion With NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor With Double Loops
,”
Ind. Eng. Chem.
,
45
(
8
), pp.
2689
2696
.
7.
Jung
,
J.
, and
Gamwo
,
I.
,
2008
, “
Multiphase CFD-Based Models for Chemical Looping Combustion Process: Fuel Reactor Modeling
,”
Powder Technol.
,
183
(
3
), pp.
401
409
.
8.
Weber
,
J.
,
Straub
,
D.
,
Breault
,
R. W.
, and
Richards
,
G.
,
2014
, “
Operating Experience of a Chemical Looping Circulating Fluidized Bed Combustor
,”
39th International Technical Conference on Clean Coal and Fuel Systems
, Clearwater, FL, June 1–5, Paper No. 86.
9.
Weber
,
J.
,
Straub
,
D.
,
Breault
,
R. W.
, and
Richards
,
G.
,
2014
, “
Operating Experience of a 50 kWth Chemical Looping Circulating Fluidized Bed Combustor and Geometrically Similar Cold Flow Unit
,”
International Conference on Chemical Looping
, Gothenburg, Sweden, Sept. 9–11.
10.
Breault
,
R. W.
,
Weber
,
J.
,
Bayham
,
S.
, and
Straub
,
D.
,
2016
, “
Operating Experience of a 50kwth Methane Chemical Looping Reactor
,”
Fluidization XV
, Quebec, Canada, May 22–27.
11.
LLC CS
,
2009
, “
Barracuda: Computational Particle Fluid Dynamics
,”
CPFD-software
, Albuquerque, NM.
12.
Andrews
,
M. J.
, and
O'Rourke
,
P. J.
,
1996
, “
The Multiphase Particle-in-Cell (MP-PIC) Method for Dense Particulate Flows
,”
Int. J. Multiphase Flow
,
22
(
2
), pp.
379
402
.
13.
Snider
,
D. M.
,
2001
, “
An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows
,”
J. Comput. Phys.
,
170
(
2
), pp.
523
549
.
14.
O’Rourke
,
P. J.
,
Zhao
,
P.
, and
Snider
,
D. M.
,
2009
, “
A Model for Collisional Exchange in Gas/Liquid/Solid Fluidized Beds
,”
Chem. Eng. Sci.
,
64
(
8
), pp.
1784
1797
.
15.
O'Rourke
,
P. J.
, and
Snider
,
D. M.
,
2010
, “
An Improved Collision Damping Time for MP-PIC Calculations of Dense Particle Flows With Applications to Polydisperse Sedimenting Beds and Colliding Particle Jets
,”
Chem. Eng. Sci.
,
65
(
22
), pp.
6014
6028
.
16.
Snider
,
D. M.
,
Clark
,
S. M.
, and
O’Rourke
,
P. J.
,
2011
, “
Eulerian–Lagrangian Method for Three Dimensional Thermal Reacting Flow With Application to Coal Gasifiers
,”
Chem. Eng. Sci.
,
66
(
6
), pp.
1285
1295
.
17.
Snider
,
D. M.
, and
Banerjee
,
S.
,
2010
, “
Heterogeneous Gas Chemistry in the CPFD Eulerian–Lagrangian Numerical Scheme (Ozone Decomposition)
,”
Powder Technol.
,
199
(
1
), pp.
100
106
.
18.
Anderson
,
T. B.
, and
Jackson
,
R.
,
1967
, “
Fluid Mechanical Description of Fluidized Beds: Equations of Motion
,”
Ind. Eng. Chem. Fundam.
,
6
(
4
), pp.
527
539
.
19.
Jackson
,
R.
,
2000
,
The Dynamics of Fluidized Particles
,
Cambridge University Press
,
Cambridge, UK
.
20.
Monazam
,
E. R.
,
Breault
,
R. W.
, and
Siriwardane
,
R.
,
2014
, “
Kinetics of Magnetite (Fe3O4) Oxidation to Hematite (Fe2O3) in Air for Chemical Looping Combustion
,”
Ind. Eng. Chem. Res.
,
53
(34), pp.
13320
13328
.
21.
Monazam
,
E. R.
,
Breault
,
R. W.
,
Siriwardane
,
R.
, and
Miller
,
D.
,
2013
, “
Thermogravimetric Analysis of Modified Hematite by Methane (CH4) for Chemical-Looping Combustion: A Global Kinetics Mechanism
,”
Ind. Eng. Chem. Res.
,
52
(
42
), pp.
14808
14816
.
22.
Monazam
,
E. R.
,
Breault
,
R. W.
,
Siriwardane
,
R.
,
Richards
,
G.
, and
Carpenter
,
S.
,
2013
, “
Kinetics of the Reduction of Hematite (Fe2O3) by Methane (CH4) During Chemical Looping Combustion: A Global Mechanism
,”
Chem. Eng. J.
,
232
, pp.
478
487
.
23.
Monazam
,
E. R.
,
Breault
,
R. W.
,
Siriwardane
,
R.
,
Tian
,
H.
,
Simonyi
,
T.
, and
Carpenter
,
S.
,
2012
, “
Effect of Carbon Deposition on Oxidation Rate of Copper/Bentonite in Chemical Looping Process
,”
Energy Fuels
,
26
(11), pp.
6576
6583
.
24.
Breault
,
R. W.
, and
Monazam
,
E. R.
,
2014
, “
Fixed Bed Reduction of Hematite Under Alternating Reduction and Oxidation Cycles
,”
39th International Technical Conference on Clean Coal and Fuel Systems
, Clearwater, FL, Paper No. 90.
25.
Breault
,
R. W.
, and
Monazam
,
E. R.
,
2015
, “
Fixed Bed Reduction of Hematite Under Alternating Reduction and Oxidation Cycles
,”
Appl. Energy
,
145
, pp.
180
190
.
26.
Breault
,
R. W.
, and
Monazam
,
E. R.
,
2016
, “
Modeling of the Reduction of Hematite in the Chemical Looping Combustion of Methane Using Barracuda
,”
Energy Technol.
,
4
(
10
), pp.
1221
1229
.
27.
Breault
,
R. W.
,
Liu
,
Y.
,
Konan
,
N. A.
,
Weber
,
J.
,
Huckaby
,
E. D.
, and
Gallagher
,
M. J.
,
2013
, “
Computational Fluid Dynamic Simulation of a Circulating Dual Fluidized Bed Prototype for Chemical Looping Combustion
,”
38th International Technical Conference on Clean Coal and Fuel Systems
, Clearwater, FL, June 1–5, Paper No. 71.
28.
Blaser
,
P. J.
, and
Corina
,
G.
,
2012
, “
Validation and Application of Computational Modeling to Reduce Erosion in a Circulating Fluidized Bed Boiler
,”
Int. J. Chem. Reactor Eng.
,
10
(
1
), p.
A51
.
29.
Breault
,
R. W.
,
Yarrington
,
C. S.
, and,
Weber
,
J. M.
,
2015
, “
The Effect of Thermal Treatment of Hematite Ore for Chemical Looping Combustion of Methane
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042202
.
You do not currently have access to this content.