Energy hubs is an integrated system which is capable of transporting, transforming, and storing several types of energy. A number of hubs can be combined as a network and achieve higher efficiency by exchanging information and energy with each other. A decision-making framework for optimal integration of independent small-scale distributed energy systems and traditional large scale combined heating and power (CHP) plants is presented, and an energy supply system with renewable energy resources in Shanghai is cited as a case study. A performance simulation model of this energy network is proposed based on energy hub concept and energy flow between its elements. Furthermore, a novel optimization method named Whales optimization algorithm (WOA) is presented for 24 h operational optimization. A case study is undertaken on a seven-node energy system, including four energy hubs and three load hubs. The results of the case study show that the proposed model and optimization method can improve energy utilization efficiency and reduce system operating costs, even under a system contingency condition.

References

1.
Shabanpour-Haghighi
,
A.
, and
Seifi
,
A. R.
,
2015
, “
Multi-Objective Operation Management of a Multi-Carrier Energy System
,”
Energy
,
88
, pp.
430
442
.
2.
Krause
,
T.
,
Andersson
,
G.
,
Froehlich
,
K.
, and
Vaccaro
,
A.
,
2011
, “
Multiple-Energy Carriers: Modeling of Production, Delivery, and Consumption
,”
Proc. IEEE
,
99
(
1
), pp.
15
27
.
3.
Heussen
,
K.
,
Koch
,
S.
,
Ulbig
,
A.
, and
Andersson
,
G.
,
2012
, “
Unified System-Level Modeling of Intermittent Renewable Energy Sources and Energy Storage for Power System Operation
,”
IEEE Syst. J.
,
6
(
1
), pp.
140
151
.
4.
Moeini-Aghtaie
,
M.
,
Dehghanian
,
P.
,
Fotuhi-Firuzabad
,
M.
, and
Abbaspour
,
A.
,
2014
, “
Multiagent Genetic Algorithm: An Online Probabilistic View on Economic Dispatch of Energy Hubs Constrained by Wind Availability
,”
IEEE Trans. Sustainable Energy
,
5
(
2
), pp.
699
708
.
5.
Geidl
,
M.
, and
Andersson
,
G.
,
2007
, “
Optimal Power Flow of Multiple Energy Carriers
,”
IEEE Trans. Power Syst.
,
22
(
1
), pp.
145
155
.
6.
Geidl
,
M.
,
2007
, “
Integrated Modeling and Optimization of Multi-Carrier Energy Systems
,”
Ph.D. thesis
, ETH, Swiss Federal Institute of Technology, Zurich, Switzerland, p.
75
.https://pdfs.semanticscholar.org/163e/46095eb5af05b908745a8ab61c4820ea8bcb.pdf
7.
Rastegar
,
M.
, and
Fotuhi-Firuzabad
,
M.
,
2015
, “
Load Management in a Residential Energy Hub With Renewable Distributed Energy Resources
,”
Energy Build.
,
107
, pp.
234
242
.
8.
Sharma
,
I.
,
Dong
,
J.
,
Malikopoulos
,
A. A.
,
Street
,
M.
,
Ostrowski
,
J.
,
Kuruganti
,
T.
, and
Jackson
,
R.
,
2016
, “
A Modeling Framework for Optimal Energy Management of a Residential Building
,”
Energy Build.
,
130
, pp.
55
63
.
9.
Braun
,
R. J.
,
Hanzon
,
L. G.
, and
Dean
,
J. H.
,
2011
, “
System Analysis of Thermochemical-Based Biorefineries for Coproduction of Hydrogen and Electricity
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012601
.
10.
Ozgener
,
O.
, and
Hepbasli
,
A.
,
2006
, “
An Economical Analysis on a Solar Greenhouse Integrated Solar Assisted Geothermal Heat Pump System
,”
ASME J. Energy Resour. Technol.
,
128
(
1
), pp.
28
34
.
11.
Ozalp
,
N.
,
2009
, “
Utilization of Heat, Power, and Recovered Waste Heat for Industrial Processes in the U.S. Chemical Industry
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
0224401
.
12.
Moghaddam
,
I. G.
,
Saniei
,
M.
, and
Mashhour
,
E.
,
2016
, “
A Comprehensive Model for Self-Scheduling an Energy Hub to Supply Cooling, Heating and Electrical Demands of a Building
,”
Energy
,
94
, pp.
157
170
.
13.
Ryu
,
C.
,
Tiffany
,
D. R.
,
Crittenden
,
J. F.
,
Lear
,
W. E.
, and
Sherif
,
S. A.
,
2010
, “
Dynamic Modeling of a Novel Cooling, Heat, Power, and Water Microturbine Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), pp.
735
736
.
14.
Sovacool
,
B. K.
,
2008
, “
Distributed Generation (DG) and the American Electric Utility System: What Is Stopping It?
,”
ASME J. Energy Resour. Technol.
,
130
(
1
), pp.
24
28
.
15.
Cullen
,
B.
, and
McGovern
,
J.
,
2009
, “
The Quest for More Efficient Industrial Engines: A Review of Current Industrial Engine Development and Applications
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), pp.
645
652
.
16.
La Scala
,
M.
,
Vaccaro
,
A.
, and
Zobaa
,
A. F.
,
2014
, “
A Goal Programming Methodology for Multiobjective Optimization of Distributed Energy Hubs Operation
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
658
666
.
17.
Orehounig
,
K.
,
Evins
,
R.
, and
Dorer
,
V.
,
2015
, “
Integration of Decentralized Energy Systems in Neighbourhoods Using the Energy Hub Approach
,”
Appl. Energy
,
154
, pp.
277
289
.
18.
del Real
,
A. J.
,
Arce
,
A.
, and
Bordons
,
C.
,
2014
, “
Combined Environmental and Economic Dispatch of Smart Grids Using Distributed Model Predictive Control
,”
Int. J. Electr. Power Energy Syst.
,
54
, pp.
65
76
.
19.
Evins
,
R.
,
Orehounig
,
K.
,
Dorer
,
V.
, and
Carmeliet
,
J.
,
2014
, “
New Formulations of the 'Energy Hub' Model to Address Operational Constraints
,”
Energy
,
73
, pp.
387
398
.
20.
Shabanpour-Haghighi
,
A.
, and
Seifi
,
A. R.
,
2015
, “
Simultaneous Integrated Optimal Energy Flow of Electricity, Gas, and Heat
,”
Energy Convers. Manage.
,
101
, pp.
579
591
.
21.
Yang
,
H.
,
Xiong
,
T.
,
Qiu
,
J.
,
Qiu
,
D.
, and
Dong
,
Z. Y.
,
2016
, “
Optimal Operation of DES/CCHP Based Regional Multi-Energy Prosumer With Demand Response
,”
Appl. Energy
,
167
, pp.
353
365
.
22.
Kumar
,
A. R.
, and
Premalatha
,
L.
,
2015
, “
Optimal Power Flow for a Deregulated Power System Using Adaptive Real Coded Biogeography-Based Optimization
,”
Int. J. Electr. Power Energy Syst.
,
73
, pp.
393
399
.
23.
An
,
S.
,
Li
,
Q.
, and
Gedra
,
T. W.
,
2004
, “
Natural Gas and Electricity Optimal Power Flow
,”
IEEE PES
Transmission and Distribution Conference and Exposition, Dallas, TX, Sept. 7–12, pp.
138
143
.
24.
Parisio
,
A.
,
Vecchio
,
C. D.
, and
Vaccaro
,
A.
,
2012
, “
A Robust Optimization Approach to Energy Hub Management
,”
Int. J. Electr. Power Energy Syst.
,
42
(
1
), pp.
98
104
.
25.
Mirjalili
,
S.
, and
Lewis
,
A.
,
2016
, “
The Whale Optimization Algorithm
,”
Adv. Eng. Software
,
95
, pp.
51
67
.
26.
Kaveh
,
A.
, and
Ghazaan
,
M. I.
,
2017
, “
Enhanced Whale Optimization Algorithm for Sizing Optimization of Skeletal Structures
,”
Mech. Based Des. Struct.
,
45
(
3
), pp.
345
362
.
27.
Ladumor
,
D. P.
,
Trivedi
,
I. N.
,
Jangir
,
P.
, and
Kumar
,
A.
,
2016
, “
A Whale Optimization Algorithm Approach for Unit Commitment Problem Solution
,” National Conference on Advancements in Electrical and Power Electronics Engineering (AEPEE-2016), Morbi, Indea, Dec. 4–17.
28.
Oliv
,
D.
,
El Aziz
,
M. A.
, and
Hassanien
,
A. E.
,
2017
, “
Parameter Estimation of Photovoltaic Cells Using an Improved Chaotic Whale Optimization Algorithm
,”
Appl. Energy
,
200
, pp.
141
154
.
29.
Maroufmashat
,
A.
,
Fowler
,
M.
,
Khavas
,
S. S.
,
Elkamel
,
A.
,
Roshandel
,
R.
, and
Hajimiragha
,
A.
,
2016
, “
Mixed Integer Linear Programing Based Approach for Optimal Planning and Operation of a Smart Urban Energy Network to Support the Hydrogen Economy
,”
Int. J. Hydrogen Energy
,
41
(
19
), pp.
7700
7716
.
30.
National Renewable Energy Laboratory (NREL), 2017, “
U.S,HOMER: Energy Systems Analysis Tools
,” Golden, Colorado, accessed June 9, 2018, https://www.nrel.gov/analysis/energy-systems-tools.html
You do not currently have access to this content.