Considering the potential of using concentrating solar power systems to supply the heat required for the allothermal gasification process, this study analyzes hydrogen production in such a system by assuming typical radiative heat flux profiles for a receiver of a central tower concentrated solar power (CSP) plant. A detailed model for allothermal gasification in a downdraft fixed bed tubular reactor is proposed. This considers solid and gas phases traveling in parallel flow along the reactor. Results for temperature and gas profile show a reasonable quantitative agreement with experimental works carried out under similar conditions. Aiming to maximize H2 yield, eight Gaussian flux distributions, similar to those typical of CSP systems, each with a total power of 8 kW (average heat flux 20 kW/m2), but with varying peak locations, were analyzed. The results show a maximum producer gas yield and a chemical efficiency of 134.1 kmol/h and 45.9% respectively, with a molar concentration of 47.2% CO, 46.9% H2, 3.3% CH4, and 2.6% CO2 for a distribution peak at z = 1.4 m, thus relatively close to the flue gas outlet. Hydrogen production and gas yield using this configuration were 4% and 2.9% higher than the achieved using the same power but homogeneously distributed. Solar to chemical efficiencies ranged from 38.9% to 45.9%, with a minimum when distribution peak was at the reactor center. These results are due to high temperatures during the latter stage of the process favoring char gasification reactions.

References

1.
Ladanai
,
S.
, and
Vinterbäck
,
J.
,
2009
, “
Global Potential of Sustainable Biomass for Energy
,” SLU, Institutionen för energi och Tek. Swedish University of Agricultural Sciences, Department of Energy and Technology, Uppsala, Sweden, p.
32
.
2.
Bridgwater
,
A. V. V.
,
1995
, “
The Technical and Economic Feasibility of Biomass Gasification for Power Generation
,”
Fuel
,
74
(
5
), pp.
631
653
.
3.
Zhang
,
W.
,
2010
, “
Automotive Fuels From Biomass Via Gasification
,”
Fuel Process. Technol.
,
91
(
8
), pp.
866
876
.
4.
Lenis
,
Y. A.
, and
Pérez
,
J. F.
,
2014
, “
Gasification of Sawdust and Wood Chips in a Fixed Bed Under Autothermal and Stable Conditions
,”
Energy Sources, Part A
,
36
(
23
), pp.
2555
2565
.
5.
Pérez
,
J. F.
,
Melgar
,
A.
, and
Benjumea
,
P. N.
,
2012
, “
Effect of Operating and Design Parameters on the Gasification/Combustion Process of Waste Biomass in Fixed Bed Downdraft Reactors: An Experimental Study
,”
Fuel
,
96
, pp.
487
496
.
6.
Islam
,
S.
, and
Dincer
,
I.
,
2018
, “
A Comparative Study of Syngas Production From Two Types of Biomass Feedstocks With Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p. 092002.
7.
Di Blasi
,
C.
,
2000
, “
Dynamic Behaviour of Stratified Downdraft Gasfiers
,”
Chem. Eng. Sci.
,
55
(
15
), pp.
2931
2944
.
8.
Di Blasi
,
C.
,
2004
, “
Modeling Wood Gasification in a Countercurrent Fixed-Bed Reactor
,”
AIChE J.
,
50
(
9
), pp.
2306
2319
.
9.
Di Blasi
,
C.
, and
Branca
,
C.
,
2013
, “
Modeling a Stratified Downdraft Wood Gasifier With Primary and Secondary Air Entry
,”
Fuel
,
104
, pp.
847
860
.
10.
Yucel
,
O.
, and
Hastaoglu
,
M. A.
,
2016
, “
Kinetic Modeling and Simulation of Throated Downdraft Gasifier
,”
Fuel Process. Technol.
,
144
, pp.
145
154
.
11.
Hobbs
,
M. L.
,
Radulovic
,
P. T.
, and
Smoot
,
L. D.
,
1992
, “
Modeling Fixed-Bed Coal Gasifiers
,”
AIChE J.
,
38
(
5
), pp.
681
702
.
12.
Musinguzi
,
W. B.
,
Okure
,
M. A. E.
,
Sebbit
,
A.
,
Løvås
,
T.
, and
da Silva
,
I.
,
2014
, “
Thermodynamic Modeling of Allothermal Steam Gasification in a Downdraft Fixed-Bed Gasifier
,”
Adv. Mater. Res
,
875–877
, pp.
1782
1793
.
13.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
41803
.
14.
Iliuta
,
I.
,
Leclerc
,
A.
, and
Larachi
,
F.
,
2010
, “
Allothermal Steam Gasification of Biomass in Cyclic Multi-Compartment Bubbling Fluidized-Bed Gasifier/Combustor—New Reactor Concept
,”
Bioresour. Technol
,
101
(
9
), pp.
3194
3208
.
15.
Olaleye
,
A. K.
,
Adedayo
,
K. J.
,
Wu
,
C.
,
Nahil
,
M. A.
,
Wang
,
M.
, and
Williams
,
P. T.
,
2014
, “
Experimental Study, Dynamic Modelling, Validation and Analysis of Hydrogen Production From Biomass Pyrolysis/Gasification of Biomass in a Two-Stage Fixed Bed Reaction System
,”
Fuel
,
137
, pp.
364
374
.
16.
Garcia
,
H. J.
,
2011
, “
Modelación de La Gasificación de Biomasa En Un Reactor de Lecho Fijo
,” Universidad Nacional de Colombia, Bogotá, Colombia.
17.
Romero
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Concentrating Solar Thermal Power and Thermochemical Fuels
,”
Energy Environ. Sci.
,
5
(
11
), p.
9234
.
18.
Kalinci
,
Y.
,
Hepbasli
,
A.
, and
Dincer
,
I.
,
2013
, “
Performance Assessment of Hydrogen Production From a Solar-Assisted Biomass Gasification System
,”
Int. J. Hydrogen Energy
,
38
(
14
), pp.
6120
6129
.
19.
Piatkowski
,
N.
,
Wieckert
,
C.
,
Weimer
,
A. W.
, and
Steinfeld
,
A.
,
2011
, “
Solar-Driven Gasification of Carbonaceous Feedstock—A Review
,”
Energy Environ. Sci.
,
4
(
1
), pp.
73
82
.
20.
Piatkowski
,
N.
, and
Steinfeld
,
A.
,
2011
, “
Solar Gasification of Carbonaceous Waste Feedstocks in a Packed-Bed Reactor-Dynamic Modeling and Experimental Validation
,”
AIChE J.
,
57
(
12
), pp.
3522
3533
.
21.
Melchior
,
T.
,
Perkins
,
C.
,
Lichty
,
P.
,
Weimer
,
A. W.
, and
Steinfeld
,
A.
,
2009
, “
Solar-Driven Biochar Gasification in a Particle-Flow Reactor
,”
Chem. Eng. Process. Process Intensif.
,
48
(
8
), pp.
1279
1287
.
22.
Maag
,
G.
, and
Steinfeld
,
A.
,
2010
, “
Design of a 10 MW Particle-Flow Reactor for Syngas Production by Steam-Gasification of Carbonaceous Feedstock Using Concentrated Solar Energy
,”
Energy Fuels
,
24
(
12
), pp.
6540
6547
.
23.
Kruesi
,
M.
,
Jovanovic
,
Z. R.
,
dos Santos
,
E. C.
,
Yoon
,
H. C.
, and
Steinfeld
,
A.
,
2013
, “
Solar-Driven Steam-Based Gasification of Sugarcane Bagasse in a Combined Drop-Tube and Fixed-Bed Reactor—Thermodynamic, Kinetic, and Experimental Analyses
,”
Biomass Bioenergy
,
52
, pp.
173
183
.
24.
Lichty
,
P.
,
Perkins
,
C.
,
Woodruff
,
B.
,
Bingham
,
C.
, and
Weimer
,
A.
,
2010
, “
Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
11012
.
25.
Kruesi
,
M.
,
Jovanovic
,
Z. R.
, and
Steinfeld
,
A.
,
2014
, “
A Two-Zone Solar-Driven Gasifier Concept: Reactor Design and Experimental Evaluation With Bagasse Particles
,”
Fuel
,
117
(
Pt. A
), pp.
680
687
.
26.
Siebers
,
D. L.
, and
Kraabel
,
J. S.
,
1984
,
Estimating Convective Energy Losses From Solar Central Receivers
, Sandia National Laboratories,
Albuquerque, NM
.
27.
Di Blasi
,
C.
,
Signorelli
,
G.
, and
Portoricco
,
G.
,
1999
, “
Countercurrent Fixed-Bed Gasification of Biomass at Laboratory Scale
,”
Ind. Eng. Chem. Res.
,
38
(
7
), pp.
2571
2581
.
28.
Mandl
,
C.
,
Obernberger
,
I.
, and
Biedermann
,
F.
,
2010
, “
Modelling of an Updraft Fixed-Bed Gasifier Operated With Softwood Pellets
,”
Fuel
,
89
(
12
), pp.
3795
3806
.
29.
Pérez
,
J.
,
2009
,
Gasificación de Biomasa: Estudios Teórico Experimentales En Lecho Fijo Equicorriente
, Editorial Universidad de Antioquia,
Medellín, Colombia
.
30.
Buekens
,
A. G.
, and
Schoeters
,
J. G.
,
1985
, “
Modelling of Biomass Gasification
,”
Fundamentals of Thermochemical Biomass Conversion
, R. P. Overend, T. A. Milne, and L. K. Mudge, eds., Elsevier Applied Science Publishers, Brussels, Belgium, pp.
619
689
.
31.
Bryden
,
K. M.
, and
Ragland
,
K. W.
,
1996
, “
Numerical Modeling of a Deep, Fixed Bed Combustor
,”
Energy Fuels
,
10
(
2
), pp.
269
275
.
32.
Z'Graggen
,
A.
,
Haueter
,
P.
,
Maag
,
G.
,
Vidal
,
A.
,
Romero
,
M.
, and
Steinfeld
,
A.
,
2007
, “
Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power-III. Reactor Experimentation With Slurry Feeding
,”
Int. J. Hydrogen Energy
,
32
(
8
), pp.
992
996
.
33.
Gómez
,
A.
,
Klose
,
W.
, and
Rincón
,
S.
,
2008
,
Pirólisis de Biomasa: Cuesco de Palma de Aceite
, Kassel University Press, Kassel, Germany.
34.
Li
,
Y. H.
, and
Chen
,
H. H.
,
2018
, “
Analysis of Syngas Production Rate in Empty Fruit Bunch Steam Gasification With Varying Control Factors
,”
Int. J. Hydrogen Energy
,
43
(
2
), pp.
667
675
.
You do not currently have access to this content.