In this paper, the hydrodynamic flow inside an internally circulating fluidized bed (ICFBG) was characterized using experimental and three-dimensional computational fluid dynamics (CFD) models. Eulerian-Eulerian model (EEM) incorporating the kinetic theory of granular flow was implemented in order to simulate the gas–solid flow. A full-scale plexiglass cold flow experimental model was built to verify simulation results prior to the fabrication of the gasifier. Six parameters were manipulated to achieve the optimum design geometry: fluidization flow rate of the draft tube (Qdt), aeration flow rate of the annulus (Qan), initial bed static height (Hbs), draft tube height (Hdt), draft tube diameter (Ddt), and orifice diameter (Dor). The investigated parameters showed strong effect on the particle flow characteristics in terms of the pressure difference (ΔP) and solid circulation rate (Gs). The predicted results by simulation for the optimum case were in close agreement with experimental measurements with about 5% deviation. The results show that the ICFBG operated stably with the maximum Gs value of 86.6 kg/h at Qdt of 350 LPM, Qan of 150 LPM, Hbs of 280 mm, Hdt of 320 mm, Ddt of 100 mm, and Dor of 20 mm.

References

1.
Ren
,
X.
,
Meng
,
X.
,
Panahi
,
A.
,
Rokni
,
E.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2018
, “
Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051801
.
2.
Wladyslaw
,
M.
,
2017
, “
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062204
.
3.
Hassan
,
B.
,
Ogidiama
,
O. V.
,
Khan
,
M. N.
, and
Shamim
,
T.
,
2017
, “
Energy and Exergy Analyses of a Power Plant With Carbon Dioxide Capture Using Multistage Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032002
.
4.
Breault
,
R. W.
,
Weber
,
J.
,
Straub
,
D.
, and
Bayham
,
S.
,
2017
, “
Computational Fluid Dynamics Modeling of the Fuel Reactor in NETL's 50 kWth Chemical Looping Facility
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042211
.
5.
Yan
,
Y.
,
Feng
,
S.
,
Zhang
,
L.
,
Li
,
L.
,
Zhang
,
L.
, and
Yang
,
Z.
,
2018
, “
Experimental Research on Catalytic Combustion Characteristics of Inferior Coal and Sludge Mixture
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032201
.
6.
Sang
,
Z.
,
Bo
,
Z.
,
Liu
,
X.
, and
Weng
,
Y.
,
2017
, “
Characteristic Analysis of a Rotary Regenerative Type Catalytic Combustion Reactor for Ultra Low Calorific Value Gas
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062208
.
7.
Lin
,
J.-C. M.
,
2007
, “
Combination of a Biomass Fired Updraft Gasifier and a Stirling Engine for Power Production
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
66
70
.
8.
Zhao
,
Y.
,
Feng
,
D.
,
Zhang
,
Z.
,
Sun
,
S.
,
Che
,
H.
, and
Luan
,
J.
,
2018
, “
Experimental Study on Autothermal Cyclone Air Gasification of Biomass
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042001
.
9.
Kreitzberg
,
T.
,
Haustein
,
H. D.
,
Gövert
,
B.
, and
Kneer
,
R.
,
2016
, “
Investigation of Gasification Reaction of Pulverized Char Under N2/CO2Atmosphere in a Small-Scale Fluidized Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042207
.
10.
Guell
,
B. M.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2013
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
11.
Zainal
,
Z. A.
,
Lahijani
,
P.
,
Mohammadi
,
M.
, and
Mohamed
,
A.
,
2010
, “
Gasification of Lignocellulosic Biomass in Fluidized Beds for Renewable Energy Development: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2852
2862
.
12.
Zhou
,
Z.
,
Ma
,
L. L.
,
Yin
,
X. L.
,
Wu
,
C. Z.
,
Huang
,
L. C.
, and
Wang
,
C.
,
2009
, “
Study on Biomass Circulation and Gasification Performance in a Clapboard-Type Internal Circulating Fluidized Bed Gasifier
,”
Biotechnol. Adv.
,
27
(
5
), pp.
612
615
.
13.
Xiao
,
X.
,
Le
,
D. D.
,
Morishita
,
K.
,
Zhang
,
S.
,
Li
,
L.
, and
Takarada
,
T.
,
2010
, “
Multi-Stage Biomass Gasification in Internally Circulating Fluidized-Bed Gasifier (ICFG): Test Operation of Animal-Waste-Derived Biomass and Parametric Investigation at Low Temperature
,”
Fuel Process. Technol.
,
91
(
8
), pp.
895
902
.
14.
Barisano
,
D.
,
Canneto
,
G.
,
Nanna
,
F.
,
Alvino
,
E.
,
Pinto
,
G.
,
Villone
,
A.
,
Carnevale
,
M.
,
Valerio
,
V.
,
Battafarano
,
A.
, and
Braccio
,
G.
,
2016
, “
Steam/Oxygen Biomass Gasification at Pilot Scale in an Internally Circulating Bubbling Fluidized Bed Reactor
,”
Fuel Process. Technol.
,
141
, pp.
74
81
.
15.
Svoboda
,
K.
,
Kalisz
,
S.
,
Miccio
,
F.
,
Wieczorek
,
K.
, and
Pohorel
,
M.
,
2009
, “
Simplified Modeling of Circulating Flow of Solids Between a Fluidized Bed and a Vertical Pneumatic Transport Tube Reactor Connected by Orifices
,”
Powder Technol.
,
192
(
1
), pp.
65
73
.
16.
Miccio
,
F.
,
Ruoppolo
,
G.
,
Kalisz
,
S.
,
Andersen
,
L.
,
Morgan
,
T. J.
, and
Baxter
,
D.
,
2012
, “
Combined Gasification of Coal and Biomass in Internal Circulating Fluidized Bed
,”
Fuel Process. Technol.
,
95
, pp.
45
54
.
17.
Simanjuntak
,
J. P.
, and
Zainal
,
Z. A.
,
2015
, “
Experimental Study and Characterization of a Two-Compartment Cylindrical Internally Circulating Fluidized Bed Gasifier
,”
Biomass Bioenergy
,
77
, pp.
147
154
.
18.
Jeon
,
J. H.
,
Kim
,
S. D.
,
Kim
,
S. J.
, and
Kang
,
Y.
,
2008
, “
Solid Circulation and Gas Bypassing Characteristics in a Square Internally Circulating Fluidized Bed With Draft Tube
,”
Chem. Eng. Process.
,
47
(
12
), pp.
2351
2360
.
19.
Zhao
,
W.
,
Wang
,
T.
,
Wang
,
C.
, and
Sha
,
Z.
,
2013
, “
Hydrodynamic Behavior of an Internally Circulating Fluidized Bed With Tubular Gas Distributors
,”
Particuology
,
11
(
6
), pp.
664
672
.
20.
Li
,
P.
,
Yu
,
X.
,
Liu
,
F.
, and
Wang
,
T.
,
2015
, “
Hydrodynamic Behaviors of an Internally Circulating Fluidized Bed With Wide-Size-Distribution Particles for Preparing Polysilicon Granules
,”
Powder Technol.
,
281
, pp.
112
120
.
21.
Song
,
Y.
,
Lu
,
X.
,
Wang
,
Q.
,
Li
,
J.
,
Sun
,
S.
,
Zheng
,
X.
,
Yang
,
F.
, and
Fan
,
X.
,
2017
, “
Experimental Study on Gas-Solid Flow Characteristics in an Internally Circulating Fluidized Bed Cold Test Apparatus
,”
Adv. Powder Technol.
,
28
(
9
), pp.
2102
2109
.
22.
Solnordal
,
C. B.
,
Kenche
,
V.
,
Hadley
,
T. D.
,
Feng
,
Y.
,
Witt
,
P. J.
, and
Lim
,
K. S.
,
2015
, “
Simulation of an Internally Circulating Fluidized Bed Using a Multiphase Particle-in-Cell Method
,”
Powder Technol.
,
274
, pp.
123
134
.
23.
Lee
,
J. L.
, and
Lim
,
E. W.
,
2017
, “
Comparisons of Eulerian-Eulerian and CFD-DEM Simulations of Mixing Behaviors in Bubbling Fluidized Beds
,”
Powder Technol.
,
318
, pp.
193
205
.
24.
Zhou
,
L.
,
Zhang
,
L.
,
Shi
,
W.
,
Agarwal
,
R.
, and
Li
,
W.
,
2018
, “
Transient Computational Fluid Dynamics/Discrete Element Method Simulation of Gas–Solid Flow in a Spouted Bed and Its Validation by High-Speed Imaging Experiment
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012206
.
25.
Luo
,
K.
,
Fang
,
M.
,
Yang
,
S.
,
Zhang
,
K.
, and
Fan
,
J.
,
2013
, “
LES–DEM Investigation of an Internally Circulating Fluidized Bed: Effects of Gas and Solid Properties
,”
Chem. Eng. J.
,
228
, pp.
583
595
.
26.
Feng
,
Y.
,
Smith
,
T. S.
,
Witt
,
P. J.
,
Doblin
,
C.
,
Lim
,
S.
, and
Schwarz
,
M. P.
,
2012
, “
CFDmodeling of Gas–Solid Flow in an Internally Circulating Fluidized Bed
,”
Powder Technol.
,
219
, pp.
78
85
.
27.
Li
,
P.
,
Wang
,
T.
,
Liu
,
Y.
,
Zhang
,
Q.
,
Li
,
Q.
,
Xiong
,
R.
,
Guo
,
L.
, and
Song
,
J.
,
2017
, “
CFD Simulation of the Hydrodynamic Behavior in an Internally Circulating Fluidized Bed Reactor for Producing Polysilicon Granules
,”
Powder Technol.
,
311
, pp.
496
505
.
28.
Juhui
,
C.
,
Weijie
,
Y.
,
Shuai
,
W.
,
Guangbin
,
Y.
,
Jiuru
,
L.
,
Ting
,
H.
, and
Feng
,
L.
,
2017
, “
Modelling of Coal/Biomass Co-Gasification in Internal Circulating Fluidized Bed Using Kinetic Theory of Granular Mixture
,”
Energy Convers. Manage.
,
148
, pp.
506
516
.
You do not currently have access to this content.