The Lower Cretaceous Zubair Formation is a regionally extended gas- and oil-producing sandstone sequence in Southern Iraq. Due to the weak nature of the Zubair Formation, the lack of wellbore stability is one of the most critical challenges that continuously appears during the drilling development operations. Problems associated with lack of wellbore stability, such as the tight hole, shale caving, stuck pipe, and sidetracking, are both time-consuming and expensive. This study aimed to construct a geotechnical model based on offset well data, including rock mechanical properties, in situ stresses, and formation pore pressure, coupled with suitable rock failure criteria. Mohr–Coulomb and Mogi–Coulomb failure criteria were used to predict the potential rock failure around the wellbore. The effect of the inclination and azimuth of the deviated wells on the shear failure and tensile failure mud weights was investigated to optimize the wellbore trajectory. The results show that the best orientation to drill highly deviated wells (i.e., inclinations higher than 60 deg) is along to the minimum horizontal stress (140 deg). The recommended mud weight for this selected well trajectory ranges from 1.45 to 1.5 g/cc. This study emphasizes that a wellbore stability analysis can be applied as a cost-effective tool to guide future highly deviated boreholes for better drilling performance by reducing the nonproductive time.

References

1.
Zhang
,
Z.
,
Xiong
,
Y.
, and
Guo
,
F.
,
2018
, “
Analysis of Wellbore Temperature Distribution and Influencing Factors During Drilling Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092901
.
2.
Chen
,
X.
,
Gao
,
D.
,
Yang
,
J.
,
Luo
,
M.
,
Feng
,
Y.
, and
Li
,
X.
,
2018
, “
A Comprehensive Wellbore Stability Model Considering Poroelastic and Thermal Effects for Inclined Wellbores in Deepwater Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092903
.
3.
Wang
,
X.
,
Ni
,
H.
,
Wang
,
R.
,
Zhang
,
L.
, and
Wang
,
P.
,
2018
, “
Drag-Reduction and Resonance Problems of a Jointed Drillstring in the Presence of an Axial Excitation Tool
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032904
.
4.
Jingbin
,
L.
,
Guangqing
,
Z.
,
Gensheng
,
L.
,
Zhongwei
,
H.
, and
Weichang
,
L.
,
2018
, “
A Method to Double the Extension Ability of Radial Jet Drilling Technology
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
093102
.
5.
Abbas
,
A. K.
,
Flori
,
R. E.
,
AL-Anssari
,
A.
, and
Alsaba
,
M.
,
2018
, “
Laboratory Analysis to Assess Shale Stability for the Zubair Formation, Southern Iraq
,”
J. Nat. Gas Sci. Eng.
,
56
, pp.
315
323
.
6.
Al Dushaishi
,
M. F.
,
Nygaard
,
R.
, and
Stutts
,
D. S.
,
2017
, “
An Analysis of Common Drill Stem Vibration Models
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012905
.
7.
Kamel
,
M. A.
,
Elkatatny
,
S.
,
Mysorewala
,
M. F.
,
Al-Majed
,
A.
, and
Elshafei
,
M.
,
2017
, “
Adaptive and Real-Time Optimal Control of Stick–Slip and Bit Wear in Autonomous Rotary Steerable Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032908
.
8.
Nes
,
O.
,
Fjær
,
E.
,
Tronvoll
,
J.
,
Kristiansen
,
T. G.
, and
Horsrud
,
P.
,
2012
, “
Drilling Time Reduction Through an Integrated Rock Mechanics Analysis
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032802
.
9.
Kiran
,
R.
, and
Salehi
,
S.
,
2016
, “
Thermoporoelastic Modeling of Time-Dependent Wellbore Strengthening and Casing Smear
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022903
.
10.
Zhang
,
Q.
,
Wang
,
Z.
,
Wang
,
X.
, and
Yang
,
J.
,
2014
, “
A New Comprehensive Model for Predicting the Pressure Drop of Flow in the Horizontal Wellbore
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042903
.
11.
Chen
,
X.
,
Tan
,
C.
, and
Detournay
,
C.
,
2003
, “
A Study on Wellbore Stability in Fractured Rock Masses With Impact of Mud Infiltration
,”
J. Pet. Sci. Eng.
,
38
(
3–4
), pp.
145
154
.
12.
Aslannezhad
,
M.
,
Khaksar
,
A.
, and
Jalalifar
,
H.
,
2015
, “
Determination of a Safe Mud Window and Analysis of Wellbore Stability to Minimize Drilling Challenges and Non-Productive Time
,”
J. Pet. Expl. Prod. Tech.
,
6
(
3
), pp.
493
503
.
13.
Chuanliang
,
Y.
,
Jingen
,
D.
,
Xiangdong
,
L.
,
Xiaorong
,
L.
, and
Yongcun
,
F.
,
2015
, “
Borehole Stability Analysis in Deepwater Shallow Sediments
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012901
.
14.
Mohiuddin
,
M.
,
Khan
,
K.
,
Abdulraheem
,
A.
,
Al-Majed
,
A.
, and
Awal
,
M.
,
2007
, “
Analysis of Wellbore Instability in Vertical, Directional, and Horizontal Wells Using Field Data
,”
J. Pet. Sci. Eng.
,
55
(
1–2
), pp.
83
92
.
15.
Gholami
,
R.
,
Rabiei
,
M.
,
Rasouli
,
V.
,
Aadnoy
,
B.
, and
Fakhari
,
N.
,
2015
, “
Application of Quantitative Risk Assessment in Wellbore Stability Analysis
,”
J. Pet. Sci. Eng.
,
135
, pp.
185
200
.
16.
Bradley
,
W. B.
,
1979
, “
Failure in Inclined Boreholes
,”
ASME J. Energy Resour. Technol.
,
101
(
4
), pp.
232
239
.
17.
Mansourizadeh
,
M.
,
Jamshidian
,
M.
,
Bazargan
,
P.
, and
Mohammadzadeh
,
O.
,
2016
, “
Wellbore Stability Analysis and Breakout Pressure Prediction in Vertical and Deviated Boreholes Using Failure Criteria—A Case Study
,”
J. Pet. Sci. Eng.
,
145
, pp.
482
492
.
18.
Al-Ajmi
,
A. M.
, and
Zimmerman
,
R. W.
,
2005
, “
Relation Between the Mogi and the Coulomb Failure Criteria
,”
Int. J. Rock Mech. Min. Sci.
,
42
(
3
), pp.
431
439
.
19.
Maleki
,
S.
,
Gholami
,
R.
,
Rasouli
,
V.
,
Moradzadeh
,
A.
,
Riabi
,
R. G.
, and
Sadaghzadeh
,
F.
,
2014
, “
Comparison of Different Failure Criteria in Prediction of Safe Mud Weigh Window in Drilling Practice
,”
Earth Sci. Rev.
,
136
, pp.
36
58
.
20.
Gholami
,
R.
,
Aadnoy
,
B.
,
Foon
,
L. Y.
, and
Elochukwu
,
H.
,
2017
, “
A Methodology for Wellbore Stability Analysis in Anisotropic Formations: A Case Study From the Canning Basin, Western Australia
,”
J. Nat. Gas Sci. Eng.
,
37
, pp.
341
360
.
21.
Rahman
,
M. K.
,
Chen
,
Z.
, and
Rahman
,
S. S.
,
2003
, “
Modeling Time-Dependent Pore Pressure Due to Capillary and Chemical Potential Effects and Resulting Wellbore Stability in Shales
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
169
176
.
22.
Khan
,
K.
,
Abdulaziz
,
A. A.
,
Ahmed
,
S.
, and
Ahmed
,
M.
,
2015
, “
Managing Wellbore Instability in Horizontal Wells Through Integrated Geomechanics Solutions: A Case Study From a Carbonate Reservoir
,”
Middle East Oil & Gas Show and Conference
, Manama, Bahrain, Mar. 8–11, SPE Paper No.
SPE-172550-MS
.
23.
Ahmed
,
M.
,
Al-Shehri
,
H. A.
,
Haidary
,
S. A.
, and
Povstyanova
,
M.
,
2016
, “
A Comprehensive Geomechanical Study to Understand Drilling Challenges in the Manifa Field Offshore, Saudi Arabia
,”
Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
, Dammam, Saudi Arabia, Apr. 25–28, SPE Paper No.
SPE-182833-MS
.
24.
Abbas
,
A. K.
,
Al-Hamad
,
N.
, and
Alsaba
,
M.
,
2018
, “
Enhancing Rock Mechanical Properties Estimation for Thin Beds Using Microresistivity Borehole Imaging Tool
,”
Abu Dhabi International Petroleum Exhibition & Conference
, Abu Dhabi, UAE, Nov. 12–15, SPE Paper No.
SPE-193143-MS
.
25.
Abbas
,
A. K.
,
Flori
,
R. E.
, and
Alsaba
,
M.
,
2018
, “
Estimating Rock Mechanical Properties of the Zubair Shale Formation Using a Sonic Wireline Log and Core Analysis
,”
J. Nat. Gas Sci. Eng.
,
53
, pp.
359
369
.
26.
Abbas
,
A. K.
,
Flori
,
R. E.
,
Alsaba
,
M.
,
Dahm
,
H.
, and
Alkamil
,
E. H.
,
2018
, “
Integrated Approach Using Core Analysis and Wireline Measurement to Estimate Rock Mechanical Properties of the Zubair Reservoir, Southern Iraq
,”
J. Pet. Sci. Eng.
,
166
, pp.
406
419
.
27.
Rasouli
,
V.
,
Pallikathekathil
,
Z. J.
, and
Mawuli
,
E.
,
2011
, “
The Influence of Perturbed Stresses Near Faults on Drilling Strategy: A Case Study in Blacktip Field, North Australia
,”
J. Pet. Sci. Eng.
,
76
(
1–2
), pp.
37
50
.
28.
Zhang
,
J.
,
2011
, “
Pore Pressure Prediction From Well Logs: Methods, Modifications, and New Approaches
,”
Earth Sci. Rev.
,
108
(
1–2
), pp.
50
63
.
29.
Eaton
,
B. A.
,
1969
, “
Fracture Gradient Prediction and Its Application in Oilfield Operations
,”
J. Petrol. Tech.
,
21
(
10
), pp.
1353
1360
.
30.
Anderson
,
R.
,
Ingram
,
D.
, and
Zanier
,
A.
,
1973
, “
Determining Fracture Pressure Gradients From Well Logs
,”
J. Petrol. Tech.
,
25
(
11
), pp.
1259
1268
.
31.
Jaeger
,
J. C.
,
Cook
,
N. G.
, and
Zimmerman
,
R. W.
,
2007
,
Fundamentals of Rock Mechanics
, 4th ed.,
Wiley-Blackwell
,
Hoboken, NJ
.
32.
Najibi
,
A. R.
,
Ghafoori
,
M.
,
Lashkaripour
,
G. R.
, and
Asef
,
M. R.
,
2017
, “
Reservoir Geomechanical Modeling: In-Situ Stress, Pore Pressure, and Mud Design
,”
J. Pet. Sci. Eng.
,
151
, pp.
31
39
.
33.
Dokhani
,
V.
,
Yu
,
M.
,
Miska
,
S. Z.
, and
Bloys
,
J.
,
2015
, “
The Effects of Anisotropic Transport Coefficients on Pore Pressure in Shale Formations
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032905
.
34.
Cao
,
C.
,
Pu
,
X.
,
Zhao
,
Z.
,
Wang
,
G.
, and
Du
,
H.
,
2018
, “
Experimental Investigation on Wellbore Strengthening Based on a Hydraulic Fracturing Apparatus
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052902
.
35.
Gholami
,
R.
,
Rabiei
,
M.
,
Aadnoy
,
B.
, and
Rasouli
,
V.
,
2017
, “
A Methodology for Wellbore Stability Analysis of Drilling Into Presalt Formations: A Case Study From Southern Iran
,”
J. Pet. Sci. Eng.
,
167
, pp.
249
261
.
36.
Thiercelin
,
M.
, and
Plumb
,
R.
,
1994
, “
A Core-Based Prediction of Lithologic Stress Contrasts in East Texas Formations
,”
SPE Form. Eval.
,
9
(
4
), pp.
251
258
.
37.
Kidambi
,
T.
, and
Kumar
,
G. S.
,
2016
, “
Mechanical Earth Modeling for a Vertical Well Drilled in a Naturally Fractured Tight Carbonate Gas Reservoir in the Persian Gulf
,”
J. Petrol. Sci. Eng.
,
141
, pp.
38
51
.
38.
Zoback
,
M. D.
,
Barton
,
C. A.
,
Brudy
,
M.
,
Castillo
,
D. A.
,
Finkbeiner
,
T.
,
Grollimund
,
B. R.
,
Moos
,
D. B.
,
Peska
,
P.
,
Ward
,
C. D.
, and
Wiprut
,
D. J.
,
2003
, “
Determination of Stress Orientation and Magnitude in Deep Wells
,”
Int. J. Rock Mech. Min. Sci.
,
40
(
7–8
), pp.
1049
1076
.
39.
Kingdon
,
A.
,
Fellgett
,
M. W.
, and
Williams
,
J. D.
,
2016
, “
Use of Borehole Imaging to Improve Understanding of the In-Situ Stress Orientation of Central and Northern England and Its Implications for Unconventional Hydrocarbon Resources
,”
Mar. Pet. Geol.
,
73
, pp.
1
20
.
40.
Zoback
,
M. D.
,
Moos
,
D.
,
Mastin
,
L.
, and
Anderson
,
R. N.
,
1985
, “
Well Bore Breakouts and In Situ Stress
,”
J. Geophys. Res.: Solid Earth
,
90
(
B7
), pp.
5523
5530
.
41.
Wiprut
,
D.
, and
Zoback
,
M.
,
2000
, “
Constraining the Stress Tensor in the Visund Field, Norwegian North Sea: Application to Wellbore Stability and Sand Production
,”
Inter. J. Rock Mech. Min. Sci.
,
37
(
1–2
), pp.
317
336
.
42.
Al-Ajmi
,
A. M.
, and
Zimmerman
,
R. W.
,
2006
, “
A New 3D Stability Model for the Design of Non-Vertical Wellbores
,”
41st U.S. Symposium on Rock Mechanics
(
USRMS
), Golden, CO, June 17–21, Paper No. ARMA-06-961.https://www.onepetro.org/conference-paper/ARMA-06-961
43.
Aadnoy
,
B. S.
, and
Looyeh
,
R.
,
2011
,
Petroleum Rock Mechanics Drilling Operations and Well Design
, 1st ed.,
Gulf Professional Pub
,
Oxford
.
44.
Chabook
,
M.
,
Al-Ajmi
,
A.
, and
Isaev
,
V.
,
2015
, “
The Role of Rock Strength Criteria in Wellbore Stability and Trajectory Optimization
,”
Int. J. Rock Mech. Min. Sci.
,
80
, pp.
373
378
.
45.
Aadnoy
,
B. S.
,
1989
, “
Stresses Around Horizontal Boreholes Drilled in Sedimentary Rocks
,”
J. Pet. Sci. Eng.
,
2
(
4
), pp.
349
360
.
46.
Taleghani
,
A. D.
, and
Klimenko
,
D.
,
2015
, “
An Analytical Solution for Microannulus Cracks Developed Around a Wellbore
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062901
.
47.
Mahmoud
,
M.
,
Bageri
,
B. S.
,
Elkatatny
,
S.
, and
Al-Mutairi
,
S. H.
,
2017
, “
Modeling of Filter Cake Composition in Maximum Reservoir Contact and Extended Reach Horizontal Wells in Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032904
.
48.
Salehi
,
S.
, and
Nygaard
,
R.
,
2014
, “
Full Fluid–Solid Cohesive Finite-Element Model to Simulate Near Wellbore Fractures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012903
.
49.
Zoback
,
M. D.
,
2007
,
Reservoir Geomechanics
, 1st ed.,
Cambridge University Press
,
Cambridge
.
50.
Al-Ajmi
,
A. M.
, and
Zimmerman
,
R. W.
,
2009
, “
A New Well Path Optimization Model for Increased Mechanical Borehole Stability
,”
J. Pet. Sci. Eng.
,
69
(
1–2
), pp.
53
62
.
51.
Colmenares
,
L.
, and
Zoback
,
M.
,
2002
, “
A Statistical Evaluation of Intact Rock Failure Criteria Constrained by Polyaxial Test Data for Five Different Rocks
,”
Inter. J. Rock Mech. Min. Sci.
,
39
(
6
), pp.
695
729
.
52.
Al-Ajmi
,
A. M.
, and
Zimmerman
,
R. W.
,
2006
, “
Stability Analysis of Vertical Boreholes Using the Mogi-Coulomb Failure Criterion
,”
Int. J. Rock Mech. Min. Sci.
,
43
(
8
), pp.
1200
1211
.
53.
Jassim
,
S. Z.
, and
Goff
,
J. C.
,
2006
, “
Geology of Iraq
,” 1st ed.,
Dolin and Moravian Museum
,
Brno and Prague, Czech Republic
.
54.
Abbas
,
A. K.
,
Flori
,
R. E.
, and
Alsaba
,
M.
,
2018
, “
Laboratory Geomechanical Characterization of the Zubair Shale Formation
,”
52nd U.S. Rock Mechanics/Geomechanics Symposium (ARMA)
, Seattle, WA, June 17–20, Paper No. ARMA 18–78.
55.
Abbas
,
A. K.
,
Dahm
,
H. H.
,
Flori
,
R. E.
, and
Alsaba
,
M.
,
2018
, “
Laboratory Measurements of Petrophysical and Geomechanical Properties for Zubair Sandstone Formation in Southern Iraq
,”
52nd U.S. Rock Mechanics/Geomechanics Symposium
(
ARMA
), Seattle, WA, June 17–20, Paper No. ARMA 18–243.https://www.onepetro.org/conference-paper/ARMA-2018-243
56.
Mohammed
,
H. Q.
,
Abbas
,
A. K.
, and
Dahm
,
H. H.
,
2018
, “
Wellbore Instability Analysis for Nahr Umr Formation in Southern Iraq
,”
52nd U.S. Rock Mechanics/Geomechanics Symposium
(
ARMA
), Seattle, WA, June 17–20, Paper No. ARMA 18–916.https://www.onepetro.org/conference-paper/ARMA-2018-916
57.
Rahimi
,
R.
, and
Nygaard
,
R.
,
2015
, “
Comparison of Rock Failure Criteria in Predicting Borehole Shear Failure
,”
Inter. J. Rock Mech. Min. Sci.
,
79
, pp.
29
40
.
You do not currently have access to this content.