Abstract

Energy conservation of urban district heating system is an important part of social energy conservation. In response to the situation that the setting of heat load in the system is unreasonable, the heat load forecasting method is adopted to optimize the allocation of resources. At present, the artificial neural networks (ANNs) are generally used to forecast district heat load. In order to solve the problem that networks convergence is slow or even not converged due to the random initial parameters in traditional wavelet neural networks (WNNs), the genetic algorithm with fast convergence ability is used to optimize the network structure and initial parameters of heat load prediction models. The results show that when the improved WNN is applied to forecast district heat load, the prediction error is as low as 2.93%, and the accuracy of prediction results is improved significantly. At the same time, the stability and generalization ability of the prediction model are improved.

References

1.
Building Energy Conservation Research Center of Tsinghua University
,
2010
,
China Building Energy Use
,
China Architecture & Building Press
,
Beijing, China
.
2.
Protić
,
M.
,
Shamshirband
,
S.
,
Petković
,
D.
,
Abbasi
,
A.
,
Mat Kiah
,
M. L.
,
Unar
,
J. A.
,
Živković
,
L.
, and
Raos
,
M.
,
2015
, “
Forecasting of Consumers Heat Load in District Heating Systems Using the Support Vector Machine With a Discrete Wavelet Transform Algorithm
,”
Energy
,
87
, pp.
343
351
. 10.1016/j.energy.2015.04.109
3.
Li
,
S. T.
,
2014
,
Research on Heat Load Forecasting Method of District Heating System
,
Chang'an University
,
Xi'an, Shanxi Province, China
.
4.
Shamshirband
,
S.
,
Petković
,
D.
,
Enayatifar
,
R.
,
Hanan Abdullah
,
A.
,
Marković
,
D.
,
Lee
,
M.
, and
Ahmad
,
R.
,
2015
, “
Heat Load Prediction in District Heating Systems With Adaptive Neuro-Fuzzy Method
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
760
767
. 10.1016/j.rser.2015.04.020
5.
Potocnik
,
P.
,
Strmcnik
,
E.
, and
Govekar
,
E.
,
2015
, “
Linear and Neural Network-Based Models for Short-Term Heat Load Forecasting
,” ASME
J. Mech. Eng.
,
61
(
9
), pp.
543
550
. 10.5545/sv-jme.2015.2548
6.
Chou
,
J. S.
, and
Bui
,
D. K.
,
2014
, “
Modeling Heating and Cooling Loads by Artificial Intelligence for Energy-Efficient Building Design
,”
Energy Build.
,
82
, pp.
437
446
. 10.1016/j.enbuild.2014.07.036
7.
Grosswindhager
,
S.
,
Voigt
,
A.
, and
Kozek
,
M.
,
2004
, “
Online Short-Term Forecast of System Heat Load in District Heating Networks
,”
J. Urol.
,
172
(
1
), pp.
319
324
. 10.1097/01.ju.0000129005.84831.1e
8.
Taylor
,
J. W.
,
2003
, “
Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing
,”
J. Oper. Res. Soc.
,
54
(
8
), pp.
799
805
. 10.1057/palgrave.jors.2601589
9.
Çunkaş
,
M.
, and
Altun
,
A. A.
,
2010
, “
Long Term Electricity Demand Forecasting in Turkey Using Artificial Neural Networks
,”
Energy Sources, Part B: Econ. Plann. Policy
,
5
(
3
), pp.
279
289
. 10.1080/15567240802533542
10.
Simonovic
,
M.
,
Nikolic
,
V.
,
Petrovic
,
E.
, and
Ciric
,
I.
,
2016
, “
Heat Load Prediction of Small District Heating System Using Artificial Neural Networks
,”
Therm. Sci.
,
20
(
suppl. 5
), pp.
1355
1365
. 10.2298/TSCI16S5355S
11.
Liu
,
N.
,
Tang
,
Q.
,
Zhang
,
J.
,
Fan
,
W.
, and
Liu
,
J.
,
2014
, “
A Hybrid Forecasting Model With Parameter Optimization for Short-Term Load Forecasting of Micro-Grids
,”
Appl. Energy
,
129
, pp.
336
345
. 10.1016/j.apenergy.2014.05.023
12.
Sajjadi
,
S.
,
Shamshirband
,
S.
,
Alizamir
,
M.
,
Yee
,
P. L.
,
Mansor
,
Z.
,
Manaf
,
A. A.
,
Altameem
,
T. A.
, and
Mostafaeipour
,
A.
,
2016
, “
Extreme Learning Machine for Prediction of Heat Load in District Heating Systems
,”
Energy Build.
,
122
, pp.
222
227
. 10.1016/j.enbuild.2016.04.021
13.
Ahmad
,
T.
, and
Chen
,
H.
,
2018
, “
Short and Medium-Term Forecasting of Cooling and Heating Load Demand in Building Environment With Data-Mining Based Approaches
,”
Energy Build.
,
166
, pp.
460
476
. 10.1016/j.enbuild.2018.01.066
14.
Alshammari
,
E. T.
,
Keivani
,
A.
,
Shamshirband
,
S.
,
Mostafaeipour
,
A.
,
Yee
,
P. L.
,
Petković
,
D.
, and
Ch
,
S.
,
2016
, “
Prediction of Heat Load in District Heating Systems by Support Vector Machine With Firefly Searching Algorithm
,”
Energy
,
95
, pp.
266
273
. 10.1016/j.energy.2015.11.079
15.
Ma
,
T.
, and
Xu
,
X.
,
2005
, “
Load Forecasting of District Heating System Based on Wavelet Network Model
,”
J. Tsinghua Univ. (Natural Science Edition)
,
45
(
5
), pp.
708
710
.
16.
Bessec
,
M.
, and
Fouquau
,
J.
,
2018
, “
Short-Run Electricity Load Forecasting With Combinations of Stationary Wavelet Transforms
,”
Eur. J. Oper. Res.
,
264
(
1
), pp.
149
164
. 10.1016/j.ejor.2017.05.037
17.
Ma
,
W.
,
Fang
,
S.
,
Liu
,
G.
, and
Zhou
,
R.
,
2017
, “
Modeling of District Load Forecasting for Distributed Energy System
,”
Appl. Energy
,
204
, pp.
181
205
. 10.1016/j.apenergy.2017.07.009
18.
Kawashima
,
1995
, “
Hourly Thermal Load Prediction for the Next 24 Hours by ARIMA, EWMA, LR, and an Artificial Neural Network
,”
ASHRAE Trans.
,
101
(
1
), pp.
186
200
.
19.
Suryanarayana
,
G.
,
Lago
,
J.
,
Geysen
,
D.
,
Aleksiejuk
,
P.
, and
Johansson
,
C.
,
2018
, “
Thermal Load Forecasting in District Heating Networks Using Deep Learning and Advanced Feature Selection Methods
,”
Energy
,
157
, pp.
141
149
. 10.1016/j.energy.2018.05.111
20.
Kalogiro
,
S. A.
,
2000
, “
Long-Term Performance Prediction of Forced Circulation Solar Domestic Water Heating Systems Using Artificial Neural Networks
,”
Appl. Energy
,
66
(
1
), pp.
63
74
. 10.1016/S0306-2619(99)00042-2
21.
Hao
,
Y. Z.
,
Li
,
D. Y.
, and
Hao
,
B.
,
2003
, “
Short-Term Prediction of Heat Load in Heating Metering System Based on Neural Network
,”
HVAC
,
33
(
6
), pp.
105
107
.
22.
Paudel
,
S.
,
Elmtiri
,
M.
,
Kling
,
W.
,
Corre
,
O. L.
, and
Lacarrière
,
B.
,
2014
, “
Pseudo Dynamic Transitional Modeling of Building Heating Energy Demand Using Artificial Neural Network
,”
Energy Build.
,
70
, pp.
81
93
. 10.1016/j.enbuild.2013.11.051
23.
Xie
,
L.
,
2017
, “
The Heat Load Prediction Model Based on BP Neural Network-Markov Model
,”
International Congress of Information and Communication Technology
,
Tianjin, China
,
Jan. 1–2
.
24.
Saroha
,
S.
, and
Aggarwal
,
S. K.
,
2018
, “
Wind Power Forecasting Using Wavelet Transforms and Neural Networks With Tapped Delay
,”
CSEE J. Power Energy Syst.
,
4
(
2
), pp.
197
209
. 10.17775/cseejpes.2016.00970
25.
Guo
,
L. J.
,
Mao
,
C.
, and
Zhang
,
H. Z.
,
2015
, “
Short-Term Wind Power Load Forecasting Based on EEMD and GA-BP Neural Networks
,”
J. Mach. Des
,
32
(
s1
), pp.
76
80
.
26.
Ye
,
L.
,
Chen
,
Z.
,
Zhao
,
Y. N.
, and
Zhu
,
Q.W.
,
2015
, “
Prediction Model of Photovoltaic Power Based on Genetic Algorithm and Fuzzy Radial Based Neural Network
,”
Autom. Electr. Power Syst.
,
39
(
16
), pp.
16
22
.
27.
Wang
,
M.
, and
Tian
,
Q.
,
2013
, “
Application of Wavelet Neural Network on Thermal Load Forecasting
,”
Wireless Mobile Comput.
,
6
(
6
), pp.
608
614
. 10.1504/IJWMC.2013.057579
28.
Pindoriya
,
N. M.
,
Singh
,
S. N.
, and
Singh
,
S. K.
,
2008
, “
An Adaptive Wavelet Neural Network-Based Energy Price Forecasting in Electricity Markets
,”
IEEE Trans. Power Syst.
,
23
(
3
), pp.
1423
1432
. 10.1109/TPWRS.2008.922251
29.
Yu
,
L.
,
2011
,
Analysis of 30 Cases of MATLAB Intelligent Algorithm
,
Beihang University Press
,
Beijing, China
.
30.
Wojdyga
,
K.
,
2018
, “
An Influence of Weather Conditions on Heat Demand in District Heating Systems
,”
Energy Build.
,
40
(
11
), pp.
2009
2014
. 10.1016/j.enbuild.2008.05.008
31.
Kapetanakis
,
D. S.
,
Mangina
,
E.
, and
Finn
,
D. P.
,
2017
, “
Input Variable Selection for Thermal Load Predictive Models of Commercial Buildings
,”
Energy Build.
,
137
, pp.
13
26
. 10.1016/j.enbuild.2016.12.016
32.
Sholahudin
,
S.
, and
Han
,
H.
,
2016
, “
Simplified Dynamic Neural Network Model to Predict Heating Load of a Building Using Taguchi Method
,”
Energy
,
115
(
pt.3
), pp.
1672
1678
. 10.1016/j.energy.2016.03.057
33.
Pearson
,
K.
,
1893
, “
Contributions to the Mathematical Theory of Evolution
,”
J. R. Stat. Soc.
,
56
(
4
), pp.
675
679
.
34.
Luo
,
Y. C.
,
Du
,
H. J.
, and
Cui
,
F. F.
,
2007
, “
Analysis of the Relationship Between BP Neural Network Structure and Function Approximation Based on Matlab
,”
Mod. Electron. Technol.
,
263
(
24
), pp.
88
90
.
You do not currently have access to this content.