Abstract

This paper contains theoretical results of an advanced exergy study of a double-effect series flow absorption refrigeration cycle. Traditional second law of thermodynamics analysis was performed and revealed the absorber as the component with the highest exergy destruction of the system. In the evaporator, 49.34% of the exergy destruction is avoidable and almost in it’s entirety, 99.12% is of endogenous nature. The highest potential for improvement of the high-pressure generator is its design and manufacture because 67.47% of the endogenous exergy destruction is avoidable. A parametric study was presented to discuss the sensitivity of splitting exergy destruction concepts taking into account temperature variations in the absorber and condenser temperatures and the heat source temperature.

References

1.
Gogoi
,
T. K.
,
2015
, “
Estimation of Operating Parameters of a Water-LiBr Vapor Absorption Refrigeration System Through Inverse Analysis
,”
ASME J. Energy Resour.
,
138
(
2
), p.
022002
. 10.1115/1.4031833
2.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl–H2O and LiBr–H2O Type Solar Cooling System
,”
ASME J. Energy Resour.
,
140
(
5
), p.
051204
. 10.1115/1.4038918
3.
Zhang
,
N.
,
Lior
,
N.
, and
Wei
,
H.
,
2016
, “
Performance Study and Energy Saving Process Analysis of Hybrid Absorption-Compression Refrigeration Cycles
,”
ASME J. Energy Resour.
,
138
(
6
), p.
061603
. 10.1115/1.4034589
4.
Arun
,
M. B.
,
Maiya
,
M. P.
, and
Murthy
,
S. S.
,
2001
, “
Performance Comparison of Double-Effect Parallel-Flow and Series Flow Water Lithium Bromide Absorption Systems
,”
Appl. Therm. Eng.
,
21
(
12
), pp.
1273
1279
. 10.1016/S1359-4311(01)00005-9
5.
Gomri
,
R.
, and
Hakimi
,
R.
,
2008
, “
Second Law Analysis of Double Effect Vapour Absorption Cooler System
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3343
3348
. 10.1016/j.enconman.2007.09.033
6.
Arora
,
A.
, and
Kaushik
,
S. C
,
2009
, “
Theoretical Analysis of LiBr/H2O Absorption Refrigeration Systems
,”
Energy Convers. Manage.
,
33
(
15
), pp.
1321
1340
.
7.
Kaynakli
,
O.
,
Saka
,
K.
, and
Kaynakli
,
F.
,
2015
, “
Energy and Exergy Analysis of a Double Effect Absorption Refrigeration System Based on Different Heat Sources
,”
Energy Convers. Manage.
,
106
, pp.
21
30
. 10.1016/j.enconman.2015.09.010
8.
Halil-Yilmaz
,
I.
,
Saka
,
K.
, and
Kaynakli
,
O.
,
2016
, “
A Thermodynamic Evaluation on High Pressure Condenser of Double Effect Absorption Refrigeration System
,”
Energy Convers. Manage.
,
113
, pp.
1031
1041
.
9.
Mussati
,
S. F.
,
Cignitti
,
S.
,
Mansouri
,
S. S.
,
Gernaey
,
K. V.
,
Morosuk
,
T.
, and
Mussati
,
M. C.
,
2018
, “
Configuration Optimization of Series Flow Double-Effect Water-Lithium Bromide Absorption Refrigeration Systems by Cost Minimization
,”
Energy Convers. Manage.
,
158
, pp.
359
372
. 10.1016/j.enconman.2017.12.079
10.
Azhar
,
M. D.
, and
Siddiqui
,
M. A.
,
2019
, “
Firts and Second Law Analysis of Double Effect Parallel and Series Flow Direct Fired Absorption Cycles for Optimum Operating Parameters
,”
ASME J. Energy Resour.
,
141
(
12
), p.
124501
. 10.1115/1.4043880
11.
Safarnezhad-Bagheri
,
B.
,
Shirmohammadi
,
R.
,
Mahmoudi
,
S. M. S.
, and
Rosen
,
M. A.
,
2019
, “
Optimization and Comprehensive Exergy-Based Analyses of a Parallel Flow Double-Effect Water-Lithium Bromide Absorption Refrigeration System
,”
Appl. Therm. Eng.
,
152
, pp.
643
653
. 10.1016/j.applthermaleng.2019.02.105
12.
Misra
,
R. D.
,
Sahoo
,
P. K.
, and
Gupta
,
A.
,
2005
, “
Thermoeconomic Evaluation and Optimization of a Double-Effect H2O/LiBr Vapour-Absorption Refrigeration System
,”
Int. J. Refrig.
,
28
(
3
), pp.
331
343
. 10.1016/j.ijrefrig.2004.09.006
13.
Colorado
,
D.
, and
Rivera
,
W.
,
2015
, “
Performance Comparison Between a Conventional Vapor Compression and Compression-Absorption Single-Stage and Double-Stage Systems Used for Refrigeration
,”
Appl. Therm. Eng.
,
87
, pp.
273
285
. 10.1016/j.applthermaleng.2015.05.029
14.
Sharqawy
,
M. H.
,
Lienhard
,
J. H.
, and
Zubair
,
S. M.
,
2011
, “
On Exergy Calculations of Seawater with Applications in Desalination Systems
,”
Int. J. Therm. Sci.
,
50
(
2
), pp.
187
196
. 10.1016/j.ijthermalsci.2010.09.013
15.
Morosuk
,
T.
, and
George
,
T.
,
2009
, “
Advanced Exergy Analysis for Chemically Reacting Systems-Application to a Simple Open Gas-Turbine System
,”
Int. J. Thermodyn.
,
12
(
3
), pp.
105
111
.
16.
Gong
,
S.
, and
Goni Boulama
,
K.
,
2014
, “
Parametric Study of An Absorption Refrigeration Machine Using Advances Exergy Analysis
,”
Energy
,
76
(
C
), pp.
453
467
. 10.1016/j.energy.2014.08.038
17.
Colorado
,
D.
,
2017
, “
Advanced Exergy Analysis Applied to a Single-Stage Heat Transformer
,”
Appl. Therm. Eng.
,
116
, pp.
584
596
. 10.1016/j.applthermaleng.2017.01.109
18.
Colorado
,
D.
,
2019
, “
Advanced Exergy Analysis of a Compression-Absorption Cascade Refrigeration System
,”
ASME J. Energy Resour.
,
141
(
4
), p.
042002
. 10.1115/1.4042003
19.
McNeely
,
L. A.
,
1979
, “
Thermodynamics Properties of Aqueous Solutions of Lithium Bromide
,”
ASHRAE Trans.
,
85
, pp.
413
434
.
20.
Kaita
,
Y.
,
2001
, “
Thermodynamic Properties of Lithium Bromide–Water Solutions At High Temperatures
,”
Int. J. Refrig.
,
24
(
5
), pp.
374
390
. 10.1016/S0140-7007(00)00039-6
21.
Wagner
,
W.
, and
Pruß
,
A.
,
1995
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Specific Use
,”
J. Phys. Chem. Reference Data
,
31
(
2
), pp.
387
535
. 10.1063/1.1461829
You do not currently have access to this content.