Abstract

The start of injection (SOI) timing has a significant effect on increasing the homogeneity of the air–fuel mixture in an reactivity controlled compression ignition (RCCI) engine. In this paper, the impact of the SOI timing from 14 deg to 74 deg before top dead center (bTDC) and different inlet valve closing (IVC) temperatures on natural gas/diesel RCCI performance and emissions have been studied. Also, the simulations carried out by avl fire which is coupled with chemical kinetics. The results showed that in the SOIs of 14 deg, 24 deg, and 34 deg bTDC, the fuel is sprayed into the piston bowl; however, in the SOI of 44 deg bTDC, the fuel collides the bowl rim edge, because of the downward movement of the piston. With the advancement of diesel SOI timing from 14 deg to 74 deg bTDC, two different combustion trends can be observed. However, this advancement leads to a lower CO emission, but it raises the CO2 emission level. Although the pressure is a primary parameter for NOx emission, the difference between the trends of NOx and pressure plots indicates that different factors affect the NOx production and also increase the IVC temperature, and raises the in-cylinder pressure, heat release rate, NOx and CO2 emissions, while it reduces the CO emission.

References

1.
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
, and
Raihan
,
M. S.
,
2016
, “
The Effect of Injection Parameters and Boost Pressure on Diesel-Propane Dual Fuel low-Temperature Combustion in a Single-Cylinder Research Engine
,”
Fuel
,
184
, pp.
490
502
. 10.1016/j.fuel.2016.07.042
2.
Ghaedi
,
A.
,
Shafaghat
,
R.
, and
Jahanian
,
O.
,
2019
, “
Comparing the Performance of a CI Engine After Replacing the [Q12]Mechanical Injector With a Common Rail Solenoid Injector
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2475
2485
.
3.
Epping
,
K.
,
Acevec
,
S.
,
Bechtold
,
R.
, and
Dec
,
J.
,
2013
, “
The Potential of HCCI Combustion for High Efficiency and Low Emissions
,”
SAE Technical Paper, 2002-01-1923
, pp.
4
11
.
4.
Kanda
,
T.
,
Hakozaki
,
T.
,
Uchimoto
,
T.
,
Hatano
,
J.
,
Kitayama
,
N.
, and
Sono
,
H.
,
2005
, “
PCCI Operation With Early Injection of Conventional Diesel Fuel
,”
SAE Transaction, J. Engine
,
114
(3), pp.
584
593
.https://www.jstor.org/stable/44722026
5.
Ezoji
,
H.
,
Shafaghat
,
R.
, and
Jahanian
,
O.
,
2018
, “
Numerical Simulation of Dimethyl Ether/Natural Gas Blend Fuel HCCI Combustion to Investigate the Effects of Operational Parameters on Combustion and Emissions
,”
J. Therm. Anal. Calorim
,
135
(
3
), pp.
1775
1785
.
6.
Lu
,
X.
,
Han
,
D.
, and
Huang
,
Z.
,
2011
, “
Fuel Design and Management for the Control of Advanced Compression-Ignition Combustion Modes
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
741
783
. 10.1016/j.pecs.2011.03.003
7.
Yousefzadeh
,
A.
, and
Jahanian
,
O.
,
2017
, “
Using Detailed Chemical Kinetics 3D-CFD Model to Investigate Combustion Phase of a CNG-HCCI Engine According to Control Strategy Requirements
,”
Energy Convers. Manage.
,
133
, pp.
524
534
. 10.1016/j.enconman.2016.10.072
8.
Fathi
,
M.
,
Jahanian
,
O.
, and
Shahbakhti
,
M.
,
2017
, “
Modeling and Controller Design Architecture for Cycle-by-Cycle Combustion Control of Homogeneous Charge Compression Ignition (HCCI) Engines—A Comprehensive Review
,”
Energy Convers. Manage.
,
139
, pp.
1
19
. 10.1016/j.enconman.2017.02.038
9.
Eichmeier
,
J.
,
Reits
,
R.
, and
Rutland
,
C.
,
2014
, “
A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics
,”
SAE Int. J. Engines
,
7
(
1
), pp.
106
119
. 10.4271/2014-01-1074
10.
Benajes
,
J.
,
Molina
,
S.
,
Garcia
,
A.
, and
Belarte
,
E.
,
2014
, “
An Investigation on RCCI Combustion in a Heavy-Duty Diesel Engine Using an In-Cylinder Blending of Diesel and Gasoline Fuels
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
66
76
. 10.1016/j.applthermaleng.2013.10.052
11.
Desantes
,
J. M.
,
Benajes
,
J.
,
Garcia
,
A.
, and
Monsalve-Serrano
,
J.
,
2014
, “
The Role of the In-Cylinder Gas Temperature and Oxygen Concentration Over Low Load Reactivity Controlled Compression Ignition Combustion Efficiency
,”
Energy Convers. Manage.
,
78
, pp.
854
868
.
12.
Ryan Walker
,
N.
,
Wissink
,
M.
,
DelVescovo
,
D. A.
, and
Reitz
,
R. D.
,
2015
, “
Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042202
. 10.1115/1.4030110
13.
Poorghasemi
,
K.
,
Saray
,
R. K.
,
Ansari
,
E.
,
Khoshbakht Irdmousa
,
B.
,
Shahbakhti
,
M.
, and
Naber
,
J.
,
2017
, “
Effect of Diesel Injection Strategies on Natural Gas/Diesel RCCI Combustion Characteristics in a Light-Duty Diesel Engine
,”
Appl. Energy
,
199
, pp.
430
446
. 10.1016/j.apenergy.2017.05.011
14.
Paykani
,
A.
,
Kakaee
,
H.
,
Rahnama
,
P.
, and
Reitz
,
R. D.
,
2015
, “
Effects of Diesel Injection Strategy on Natural Gas/Diesel Reactivity Controlled Compression Engine Combustion
,”
Energy Convers. Manage.
,
90
, pp.
814
826
.
15.
Lia
,
J.
,
Yang
,
W.
, and
Zhou
,
D.
,
2017
, “
Review on the Management of RCCI Engines
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
65
79
. 10.1016/j.rser.2016.11.159
16.
Li
,
Y.
,
Jia
,
M.
,
Liu
,
Y.
, and
Xie
,
M.
,
2013
, “
Numerical Study on the Combustion and Emission Characteristics of a Methanol/Diesel Reactivity Controlled Compression Ignition (RCCI) Engine
,”
Appl. Energy
,
106
, pp.
184
197
. 10.1016/j.apenergy.2013.01.058
17.
Dwived
,
U.
,
Carpenter
,
C. D.
,
Guerry
,
E. S.
,
Polk
,
A. C.
,
Krishnan
,
S. R.
, and
Srinivasan
,
K. K.
,
2014
, “
Performance and Emissions Characteristics of Diesel-Ignited Gasoline Dual-Fuel Combustion in a Single-Cylinder Research Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(10), p.
101504
.
18.
Xu
,
M.
,
Cheng
,
W.
,
Li
,
Z.
,
Zhang
,
H.
,
An
,
T.
, and
Meng
,
Z.
,
2016
, “
Pre-injection Strategy for Pilot Diesel Compression-Ignition Natural Gas Engine
,”
Appl. Energy
,
179
, pp.
85
93
. 10.1016/j.apenergy.2016.06.127
19.
Paykani
,
A.
,
Kakaee
,
A. H.
,
Rahnama
,
P.
, and
Reitz
,
R. D.
,
2015
, “
Effects of Diesel Injection Strategy on Natural Gas/Diesel Reactivity Controlled Compression Ignition Combustion
,”
Energy
,
90
, pp.
814
826
. 10.1016/j.energy.2015.07.112
20.
Khatamnejad
,
H.
,
Khalilarya
,
S.
,
Samad
,
J.
, and
Mirsalim
,
S. M.
,
2018
, “
Effect of Intake Charge Temperature on Combustion and Emissions Characteristics in a Natural Gas-Diesel Reactivity Controlled Compression Ignition Engine
,”
Gas Process. J.
,
5
(
2
), pp.
75
84
.
21.
Motallebi Hasankola
,
S. S.
,
Shafaghat
,
R.
,
Jahanian
,
O.
,
Amiri
,
S. T.
, and
Shooghi
,
M.
,
2019
, “
Numerical Investigation of the Effects of Inlet Valve Closing Temperature and Exhaust Gas Recirculation on the Performance and Emissions of an RCCI Engine
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2465
2474
.
22.
Fajri
,
H. R.
,
Shamehki
,
A. H.
,
Rezaie
,
S.
,
Jafari
,
M. J.
, and
Jazayeri
,
S. A.
,
2019
, “
A Detailed Study of Boost Pressure and Injection Timing on an RCCI Engine Map Fueled With Iso-Octane and N-Heptane Fuels
,”
Appl. Fluid Mech.
,
12
(
4
), pp.
1161
1175
. 10.29252/jafm.12.04.29492
23.
Benajes
,
J.
,
Molina
,
S.
,
Garcia
,
A.
, and
Monsalve-Serrano
,
J.
,
2015
, “
Effects of Direct Injection Timing and Blending Ratio on RCCI Combustion With Different Low Reactivity Fuels
,”
Energy Convers. Manage.
,
99
, pp.
193
209
. 10.1016/j.enconman.2015.04.046
24.
Nieman
,
D. E.
,
Dempsey
,
A. B.
, and
Reitz
,
R. D.
,
2012
, “
Heavy-duty RCCI Operation Using Natural Gas and Diesel
,”
SAE Int. J. Engines
,
5
(
2
), pp.
270
285
. 10.4271/2012-01-0379
25.
AVL FIRE User Manual
,
CFD-Solver_v2011_CFD-Solver
.
26.
Yousefi
,
A.
,
Guo
,
H.
, and
Birouk
,
M.
,
2018
, “
An Experimental and Numerical Study on Diesel Injection Split of a Natural Gas/Diesel Dual-Fuel Engine at a Low Engine Load Fuel
,”
Fuel
,
212
, pp.
332
346
. 10.1016/j.fuel.2017.10.053
27.
Fakhari
,
A. H.
,
Shafaghat
,
R.
,
Jahanian
,
O.
,
Ezoji
,
H.
, and
Motallebi Hasankola
,
S. S.
,
2019
, “
Numerical Simulation of Natural Gas/Diesel Dual-Fuel Engine for Investigation of Performance and Emission
,”
J. Therm. Anal. Calorim.
,
139
(
4
), pp.
2455
2464
.
28.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin Helmotz/Rayleightaylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
. 10.1615/AtomizSpr.v9.i6.40
29.
Sadabadi
,
K. K.
,
Shahbakhti
,
M.
,
Bharath
,
A. N.
, and
Reitz
,
R. D.
,
2015
, “
Modeling of Combustion Phasing of a Reactivity-Controlled Compression Ignition Engine for Control Applications
,”
Int. J. Engine Res.
,
17
(
4
), pp.
421
435
. 10.1177/1468087415583773
You do not currently have access to this content.