Abstract

Reduction of the detail chemical kinetic mechanism is important in solving complex combustion simulation. In this work, a model reduction scheme rate-controlled constrained-equilibrium (RCCE) is considered in predicting the oxidation of ethanol. A detail kinetic mechanism by Merinov from Lawrence Livermore National Laboratory (LLNL) is used in modeling this reduction technique. The RCCE method considers constrained equilibrium states which subjected to a lower number of constraints compared to the number of species. It then has to solve a smaller number of differential equations compared to the number of equations required in solving the detailed kinetic model (DKM). The accuracy of this solution depends on the selection of the constraint. A systematic procedure which will help in identifying the constraint at an optimal level of accuracy is an essential for RCCE modeling. A fully automated Approximate Singular Value Decomposition of the Actual Degrees of Disequilibrium (ASVDADD) method is used in this study to derive the constraint for RCCE simulation. ASVDADD uses an algorithm which follows the simple algebraic analysis on results of underlying DKM to find the degree of disequilibrium (DoD) of the individual chemical reactions. The number of constraints which will be used in RCCE simulation can be selected to reduce the number of equations required to solve. In the current work, this ASVDADD method is applied on ethanol oxidation to select the constraint for RCCE simulation. Both DKM and RCCE calculations on ethanol fuel are demonstrated to compare the result of temperature distribution and an ignition delay time for validating the method.

References

1.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2017
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
. 10.1115/1.4037376
2.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2016
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
. 10.1115/1.4033984
3.
Roy
,
S.
,
Zare
,
S.
, and
Askari
,
O.
,
2018
, “
Understanding the Effect of Oxygenated Additives on Combustion Characteristics of Gasoline
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022205
. 10.1115/1.4041316
4.
Zare
,
S.
,
Roy
,
S.
,
El Maadi
,
A.
, and
Askari
,
O.
,
2019
, “
An Investigation on Laminar Burning Speed and Flame Structure of Anisole-Air Mixture
,”
Fuel
,
244
(
Feb. 2019
), pp.
120
131
. 10.1016/j.fuel.2019.01.149
5.
Keck
,
J. C.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
(
2
), pp.
237
241
. 10.1016/S0010-2180(71)80166-9
6.
Beretta
,
G. P.
, and
Keck
,
J. C.
,
1986
, “
The Constrained Equilibrium Approach to Nonequilibrium Dynamics
,”
Proceedings of the 1986 Winter Annual Meeting of the ASME
,
Anaheim, CA
,
Dec. 7–12, 1986
,
Publ. Comput. Eng. Energy Syst. Second Law Anal. Model. Ed. by R.A. Gaggioli, ASME B. H0341C-AES, 3
, pp.
135
139
.
7.
Law
,
R.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
1988
, “
Rate-Controlled Constrained Equilibrium Calculations of Ignition Delay Times in Hydrogen-Oxygen Mixtures
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
1705
1713
. 10.1016/S0082-0784(89)80183-3
8.
Keck
,
J. C.
,
1990
, “
Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems
,”
Prog. Energy Combust. Sci
,
16
(
2
), pp.
125
154
. 10.1016/0360-1285(90)90046-6
9.
Tang
,
Q.
, and
Pope
,
S. B.
,
2004
, “
A More Accurate Projection in the Rate-Controlled Constrained-Equilibrium Method for Dimension Reduction of Combustion Chemistry
,”
Combust. Theory Model.
,
8
(
2
), pp.
255
279
. 10.1088/1364-7830/8/2/004
10.
Singh
,
S.
,
Powers
,
J. M.
, and
Paolucci
,
S.
,
2002
, “
On Slow Manifolds of Chemically Reactive Systems
,”
J. Chem. Phys.
,
117
(
4
), pp.
1482
1496
. 10.1063/1.1485959
11.
Gorban
,
A. N.
,
Karlin
,
I. V.
,
Ilg
,
P.
, and
Öttinger
,
H. C.
,
2001
, “
Corrections and Enhancements of Quasi-Equilibrium States
,”
J. Non-Newton. Fluid Mech.
,
96
(
1–2
), pp.
203
219
. 10.1016/S0377-0257(00)00135-X
12.
Roussel
,
M. R.
, and
Fraser
,
S. J.
,
1991
, “
On the Geometry of Transient Relaxation
,”
J. Chem. Phys.
,
94
(
11
), pp.
7106
7113
. 10.1063/1.460194
13.
Hadi
,
F.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “Fundamentals of Rate-Controlled Constrained-Equilibrium Method,”
Energy Propulsion. Green Energy Technology
,
A
Runchal
,
A
Gupta
,
A
Kushari
, and
A
Aggarwal S
, eds.,
Springer
,
Singapore
.
14.
Hadi
,
F.
,
Yousefian
,
V.
,
Sheikhi
,
M. R.
, and
Metghalchi
,
H.
,
2017
, “
Time Scale Analysis for Rate-Controlled Constrained-Equilibrium Constraint Selection
,”
Proceedings of the 10th National Combustion Meeting Combustion Institute
,
College Park. MD
,
Apr. 23–26
.
15.
Hadi
,
F.
,
Janbozorgi
,
M. H.
,
Sheikhi
,
M. R.
, and
Metghalchi
,
H.
,
2016
, “
A Study of Interactions Between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method
,”
J. Non-Equilibrium Thermodyn.
,
41
(
4
), pp.
257
278
. 10.1515/jnet-2015-0052
16.
Hadi
,
F.
,
Yousefian
,
V.
,
Sheikhi
,
M. R.
, and
Metghalchi
,
H.
,
2016
, “
A Study of the RCCE Constraint Potential Formulation Incorporating a Constraint Selection Algorithm
,”
Proceedings of the 2016 ESSCI Spring Meeting Combustion Institute
,
Princeton, NJ
,
Mar. 13–16
.
17.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2016
, “
Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022205
. 10.1115/1.4031511
18.
Janbozorgi
,
M.
,
2012
, “
Rate-Controlled Constrained-Equilibrium (RCCE) Modelling of C1-Hydrocarbon Fuels
,”
thesis
,
Department of Mechanical and Industrial Engineering, Northeastern University
.
19.
Janbozorgi
,
M.
,
Goldthwaite
,
D.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2007
, “
Rate-Controlled Constrained-Equilibrium Calculations of the Combustion Products in the Expansion Stroke of an Internal Combustion Engine
,”
Fall Tech. Meet. East. States Sect. Combust. Inst. 2007 Chemical Phys. Process. Combust.
,
12
(
1
), pp.
48
56
.
20.
Yousefian
,
V.
,
1998
, “
A Rate-Controlled Constrained-Equilibrium Thermochemistry Algorithm for Complex Reacting Systems
,”
Combust. Flame
,
115
(
1–2
), pp.
66
80
. 10.1016/S0010-2180(97)00334-9
21.
Yu
,
G.
,
Hadi
,
F.
,
Wang
,
Z.
, and
Metghalchi
,
H.
,
2020
, “
Review of Applications of Rate-Controlled Constrained-Equilibrium in Combustion Modeling
,”
J. Non-Equilibrium Thermodyn.
,
45
(
1
), p.
59
79
. 10.1515/jnet-2019-0060
22.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2019
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium
,”
ASME J. Energy Resour. Technol. Trans.
,
141
(
2
), p.
022204
. 10.1115/1.4041289
23.
Du
,
L.
,
Yu
,
G.
,
Wang
,
Z.
, and
Metghalchi
,
H.
,
2019
, “
The Rate-Controlled Constrained-Equilibrium Combustion Modeling of n-Pentane/Oxygen/Diluent Mixtures
,”
ASME J. Energy Resour. Technol. Trans.
,
141
(
8
), p.
082206
. 10.1115/1.4042532
24.
Yu
,
G.
,
Hadi
,
F.
, and
Metghalchi
,
H.
,
2019
, “
Rate-Controlled Constrained-Equilibrium Application in Shock Tube Ignition Delay Time Simulation
,”
ASME J. Energy Resour. Technol. Trans.
,
141
(
2
), pp.
1
5
. 10.1115/1.4041288
25.
Yu
,
G.
,
Zhang
,
Y.
,
Wang
,
Z.
,
Bai
,
Z.
, and
Metghalchi
,
H.
,
2019
, “
The Rate-Controlled Constrained-Equilibrium Combustion Modeling of n-Butane/Oxygen/Diluent Mixtures
,”
Fuel
,
239
, pp.
786
793
. 10.1016/j.fuel.2018.11.080
26.
Janbozorgi
,
M.
, and
Wang
,
H.
,
2018
, “
Bottom-Up Modeling Using the Rate-Controlled Constrained-Equilibrium Theory: The n-Butane Combustion Chemistry
,”
Combust. Flame
,
194
, pp.
223
232
. 10.1016/j.combustflame.2018.04.026
27.
Taylor
,
P.
,
Bishnu
,
P. S.
,
Hamiroune
,
D.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1997
, “
Constrained-Equilibrium Calculations for Chemical Systems Subject to Generalized Linear Constraints Using the NASA and STANJAN Equilibrium Programs
,”
Combust. Theory Model.
,
1
(
3
), pp.
295
312
.
28.
Hadi
,
F.
, and
H. Sheikhi
,
M. Reza
,
2016
, “
A Comparison of Constraint and Constraint Potential Forms of the Rate-Controlled Constraint-Equilibrium Method
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022202
. 10.1115/1.4031614
29.
Bishnu
,
P.
,
Hamiroune
,
D.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1997
, “
Constrained-Equilibrium Calculations for Chemical Systems Subject to Generalized Linear Constraints Using the NASA and STANJAN Equilibrium Programs
,”
Combust. Theory Model.
,
1
(
3
), pp.
295
312
. 10.1080/713665325
30.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
Rate-Controlled Constrained-Equilibrium Modeling of H/O Reacting Nozzle Flow
,”
J. Propuls. Power
,
28
(
4
), pp.
677
684
. 10.2514/1.B34545
31.
Janbozorgi
,
M.
,
Ugarte
,
S.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2009
, “
Combustion Modeling of Mono-Carbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
156
(
10
), pp.
1871
1885
. 10.1016/j.combustflame.2009.05.013
32.
Rigopoulos
,
S.
, and
Løvås
,
T.
,
2009
, “
A LOI-RCCE Methodology for Reducing Chemical Kinetics, With Application to Laminar Premixed Flames
,”
Proc. Combust. Inst
,
32
(
1
), pp.
569
576
. 10.1016/j.proci.2008.06.038
33.
Rena
,
Z.
,
Lu
,
Z.
,
Gao
,
Y.
,
Lu
,
T.
, and
Hou
,
L.
,
2017
, “
A Kinetics-Based Method for Constraint Selection in Rate-Controlled Constrained Equilibrium
,”
J. Combust. Theory Model.
,
21
(
2
), pp.
159
182
. 10.1080/13647830.2016.1201596
34.
Hiremath
,
V.
,
Ren
,
Z.
, and
Pope
,
S. B.
,
2010
, “
A Greedy Algorithm for Species Selection in Dimension Reduction of Combustion
,”
J. Combust. Theory Model.
,
14
(
5
), pp.
619
652
. 10.1080/13647830.2010.499964
35.
Hiremath
,
V.
,
Ren
,
Z.
, and
Pope
,
S. B.
,
2011
, “
Combined Dimension Reduction and Tabulation Strategy Using ISAT-RCCE-GALI for the Efficient Implementation of Combustion Chemistry
,”
Combust. Flame
,
158
(
11
), pp.
2113
2127
. 10.1016/j.combustflame.2011.04.010
36.
Rivadossi
,
L.
, and
Beretta
,
G. P.
,
2018
, “
Validation of the ASVDADD Constraint Selection Algorithm for Effective RCCE Modeling of Natural Gas Ignition in Air
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052201
. 10.1115/1.4038376
37.
Hadi
,
F.
,
Yousefian
,
V.
,
Sarfaraz
,
E.
, and
Beretta
,
G. P.
,
2018
, “
Extending Degree of Disequilibrium Analysis for Automtic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method
,”
Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition (IMECE2018)
,
Pittsburgh, PA
,
Nov. 9–15
, Energy, V06BT08A005, Paper No. IMECE2018-86509.
38.
Beretta
,
G. P.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
168
, pp.
342
364
. 10.1016/j.combustflame.2016.02.005
39.
Beretta
,
G. P.
,
Rivadossi
,
L.
, and
Janbozorgi
,
M.
,
2018
, “
Systematic Constraint Selection Strategy for Rate-Controlled Constrained-Equilibrium Modeling of Complex Nonequilibrium Chemical Kinetics: An Automatable and Thermodynamically Consistent, Quasi-Equilibrium Model of Far Nonequilibrium States of Complex Reacting Systems Based on Probing the Fully Detailed Model and Taking a Truncated Singular Value Decomposition of the Resulting Evolution of the Degrees of Disequilibrium
,”
J. Non-Equilibrium Thermodyn.
,
43
(
2
), pp.
121
130
. 10.1515/jnet-2017-0055
40.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vien
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model
,”
Combust. Flame
,
168
, pp.
20
31
. 10.1016/j.combustflame.2016.03.018
41.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
Fuel
,
190
, pp.
90
103
. 10.1016/j.fuel.2016.11.042
42.
Movaghar
,
A.
,
Lawson
,
R.
, and
Egolfopoulos
,
F. N.
,
2020
, “
Confined Spherically Expanding Flame Method for Measuring Laminar Flame Speeds: Revisiting the Assumptions and Application to C1–C4 Hydrocarbon Flames
,”
Combust. Flame
,
212
, pp.
79
92
. 10.1016/j.combustflame.2019.10.023
43.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
. 10.1016/j.apenergy.2016.06.118
44.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012204
. 10.1115/1.4033983
45.
Konnov
,
A. A.
,
2009
, “
Implementation of the NCN Pathway of Prompt-NO Formation in the Detailed Reaction Mechanism
,”
Combust. Flame
,
156
(
11
), pp.
2093
2105
. 10.1016/j.combustflame.2009.03.016
46.
Li
,
J.
,
Kazakov
,
A.
,
Chaos
,
M.
, and
Dryer
,
F. L.
,
1999
, “
Chemical Kinetics of Ethanol Oxidation
,”
Int. J. Chem. Kinet.
,
31
(
31
), pp.
183
220
.
47.
Dunphy
,
M. P.
,
Patterson
,
P. M.
, and
Simmie
,
J. M.
,
1991
, “
High Temperature Oxidation of Ethanol: Part 2—Kinetic Modeling
,”
J Chem. Soc. Faraday Trans.
,
87
(
16
), pp.
2549
2559
. 10.1039/FT9918702549
48.
Smith
,
G. P.
,
Tao
,
Y.
, and
Wang
,
H.
,
2016
, “
Foundational Fuel Chemistry Model Version 1.0 (FFCM-1)
,” https://web.stanford.edu/group/haiwanglab/FFCM1/pages/FFCM1.
49.
Dunphy
,
M. P.
, and
Simmie
,
J. M.
,
1991
, “
High Temperature Oxidation of Ethanol: Part 1—Ignition in Shock Waves
,”
J Chem. Soc. Faraday Trans.
,
87
(
11
), pp.
1691
1696
. 10.1039/FT9918701691
50.
Jasper
,
A. W.
,
Klippenstein
,
S. J.
,
Harding
,
L. B.
, and
Ruscic
,
B.
,
2007
, “
Kinetics of the Reaction of Methyl Radical With Hydroxyl Radical and Methanol Decomposition
,”
J. Phys. Chem. A
,
111
(
19
), pp.
3932
3950
. 10.1021/jp067585p
51.
Cancino
,
L. R.
,
Fikri
,
M.
,
Oliveira
,
A. A. M.
, and
Schulz
,
C.
,
2011
, “
Ignition Delay Times of Ethanol-Containing Multi-Component Gasoline Surrogates: Shock-Tube Experiments and Detailed Modeling
,”
Fuel
,
90
(
3
), pp.
1238
1244
. 10.1016/j.fuel.2010.11.003
52.
Liao
,
S. Y.
,
Jiang
,
D. M.
,
Huang
,
Z. H.
,
Zeng
,
K.
, and
Cheng
,
Q.
,
2007
, “
Determination of the Laminar Burning Velocities for Mixtures of Ethanol and Air at Elevated Temperatures
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
374
380
. 10.1016/j.applthermaleng.2006.07.026
53.
Mittal
,
G.
,
Burke
,
S. M.
,
Davies
,
V. A.
,
Parajuli
,
B.
,
Metcalfe
,
W. K.
, and
Curran
,
H. J.
,
2014
, “
Autoignition of Ethanol in a Rapid Compression Machine
,”
Combust. Flame
,
161
(
5
), pp.
1164
1171
. 10.1016/j.combustflame.2013.11.005
54.
Marinov
,
N. M.
,
1999
, “
A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation
,”
J. Chem. Kinet.
,
31
(
3
), pp.
183
220
. 10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X
55.
Hashemi
,
H.
,
Christensen
,
J. M.
, and
Glarborg
,
P.
,
2018
, “
High-Pressure Pyrolysis and Oxidation of Ethanol
,”
Fuel
,
218
(
Dec. 2017
), pp.
247
257
. 10.1016/j.fuel.2017.12.085
56.
Burke
,
M. P.
,
Chaos
,
M.
,
Ju
,
Y.
,
Dryer
,
F. L.
, and
Klippenstein
,
S. J.
,
2012
, “
Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion
,”
Int. J. Chem. Kinet.
,
44
(
7
), pp.
444
474
. 10.1002/kin.20603
57.
Saxena
,
P.
, and
Williams
,
F. A.
,
2007
, “
Numerical and Experimental Studies of Ethanol Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1149
1156
. 10.1016/j.proci.2006.08.097
58.
Leplat
,
N.
,
Dagaut
,
P.
,
Togbé
,
C.
, and
Vandooren
,
J.
,
2011
, “
Numerical and Experimental Study of Ethanol Combustion and Oxidation in Laminar Premixed Flames and in Jet-Stirred Reactor
,”
Combust. Flame
,
158
(
4
), pp.
705
725
. 10.1016/j.combustflame.2010.12.008
59.
Natarajan
,
K.
, and
Bhaskaran
,
K.
,
1981
, “
An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol
,”
Thirteenth International Symposium on Shock Waves
,
13
, pp.
834
842
.
60.
Gulder
,
O.
,
1984
, “
A Burning Velocity of Ethanol-Isooctane Blends
,”
Combust. Flame
,
56
(
3
), pp.
261
268
. 10.1016/0010-2180(84)90060-9
61.
Vagelopoulos
,
C. M.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1994
, “
Further Considerations on the Determination of Laminar Flame Speeds With the Counterflow Twin-Flame Technique
,”
Symp. Combust.
,
25
(
1
), pp.
1341
1347
. 10.1016/S0082-0784(06)80776-9
62.
Norton
,
T. S.
, and
Dryer
,
F. L.
,
1992
, “
An Experimental and Modeling Study of Ethanol Oxidation Kinetics in an Atmospheric Pressure Flow Reactor
,”
Int. J. Chem. Kinet.
,
24
(
4
), pp.
319
344
. 10.1002/kin.550240403
63.
Burke
,
U.
,
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Heufer
,
K. A.
,
Dagaut
,
P.
, and
Curran
,
H. J.
,
2016
, “
A Detailed Chemical Kinetic Modeling, Ignition Delay Time and Jet-Stirred Reactor Study of Methanol Oxidation
,”
Combust. Flame
,
165
, pp.
125
136
. 10.1016/j.combustflame.2015.11.004
64.
Millán-Merino
,
A.
,
Fernández-Tarrazo
,
E.
,
Sánchez-Sanz
,
M.
, and
Williams
,
F. A.
,
2018
, “
A Multipurpose Reduced Mechanism for Ethanol Combustion
,”
Combust. Flame
,
193
, pp.
112
122
. 10.1016/j.combustflame.2018.03.005
65.
Burke
,
S. M.
,
Metcalfe
,
W.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
,
Haas
,
F. M.
,
Santner
,
J.
,
Dryer
,
F. L.
, and
Curran
,
H. J.
,
2014
, “
An Experimental and Modeling Study of Propene Oxidation. Part 1: Speciation Measurements in Jet-Stirred and Flow Reactors
,”
Combust. Flame
,
161
(
11
), pp.
2765
2784
. 10.1016/j.combustflame.2014.05.010
66.
Burke
,
S. M.
,
Burke
,
U.
,
Mc Donagh
,
R.
,
Mathieu
,
O.
,
Osorio
,
I.
,
Keesee
,
C.
,
Morones
,
A.
,
Petersen
,
E. L.
,
Wang
,
W.
,
DeVerter
,
T. A.
,
Oehlschlaeger
,
M. A.
,
Rhodes
,
B.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Weber
,
B. W.
,
Sung
,
C. J.
,
Santner
,
J.
,
Ju
,
Y.
,
Haas
,
F. M.
,
Dryer
,
F. L.
,
Volkov
,
E. N.
,
Nilsson
,
E. J. K.
,
Konnov
,
A. A.
,
Alrefae
,
M.
,
Khaled
,
F.
,
Farooq
,
A.
,
Dirrenberger
,
P.
,
Glaude
,
P. A.
,
Battin-Leclerc
,
F.
, and
Curran
,
H. J.
,
2015
, “
An Experimental and Modeling Study of Propene Oxidation. Part 2: Ignition Delay Time and Flame Speed Measurements
,”
Combust. Flame
,
162
(
2
), pp.
296
314
. 10.1016/j.combustflame.2014.07.032
67.
Zhou
,
C.-W.
,
Li
,
Y.
,
O’Connor
,
E.
,
Somers
,
K. P.
,
Thion
,
S.
,
Keesee
,
C.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
DeVerter
,
T. A.
,
Oehlschlaeger
,
M. A.
,
Kukkadapu
,
G.
,
Sung
,
C.-J.
,
Alrefae
,
M.
,
Khaled
,
F.
,
Farooq
,
A.
,
Dirrenberger
,
P.
,
Glaude
,
P.-A.
,
Battin-Leclerc
,
F.
,
Santner
,
J.
,
Ju
,
Y.
,
Held
,
T.
,
Haas
,
F. M.
,
Dryer
,
F. L.
, and
Curran
,
H. J.
,
2016
, “
A Comprehensive Experimental and Modeling Study of Isobutene Oxidation
,”
Combust. Flame
,
167
, pp.
353
379
. 10.1016/j.combustflame.2016.01.021
68.
Li
,
Y.
,
Zhou
,
C. W.
,
Somers
,
K. P.
,
Zhang
,
K.
, and
Curran
,
H. J.
,
2017
, “
The Oxidation of 2-Butene: A High Pressure Ignition Delay, Kinetic Modeling Study and Reactivity Comparison With Isobutene and 1-Butene
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
403
411
. 10.1016/j.proci.2016.05.052
69.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
. 10.1016/j.pecs.2012.03.004
70.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
(
10
), pp.
638
675
. 10.1002/kin.20802
71.
Rivadossi
,
L.
, and
Beretta
,
G. P.
,
2016
, “
Validation of the ASVDADD Constraint Selection Algorithm for Effective RCCE Modeling of Natural Gas Ignition in Air
,”
IMECE 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17
.
72.
Beretta
,
G. P.
,
Keck
,
J. C.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics
,”
Entropy
,
14
(
2
), pp.
92
130
. 10.3390/e14020092
73.
Hadi
,
F.
,
Janbozorgi
,
M.
,
Sheikhi
,
R.
, and
Metghalchi
,
H.
,
2013
, “
Assessment of Rate-Controlled Constrained-Equilibrium Method for Implementation of Detailed Kinetics in Turbulent Combustion Simulations
,”
8th US National Combustion Meeting, Western State Section
,
University of Utah
,
May 19–22
, pp.
1
9
.
74.
Lutz
,
A. E.
,
Kee
,
R. J.
, and
M
,
J. A.
SENKIN: A FORTRAN Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis, Sandia National Laboratories
,”
1988
Rep. No. SAND87-8248
.
75.
Martin
,
C. D.
, and
Porter
,
M. A.
,
2012
, “
The Extraordinary SVD
,”
Am. Math. Mon.
,
119
(
10
), pp.
838
851
. 10.4169/amer.math.monthly.119.10.838
You do not currently have access to this content.