Abstract

Coal bed methane (CBM) significantly contributes to unconventional energy resources. With the development of the drilling technology, multi-branched horizontal wells (MBHWs) have been put into the exploitation of CBM. In this paper, a semi-analytical mathematical model is introduced to study the production characteristics of MBHWs in the composite CBM reservoir. Stress sensitivity, composite reservoir, and complex seepage mechanisms (desorption, diffusion, and Darcy flow) are taken into consideration. Through Pedrosa transformation, Perturbation transformation, Laplace transformation, Finite cosine transformation, element discretization, superposition principle, and Stehfest numerical inversion, pseudo-pressure dynamic curves and production decline curves are plotted and 13 flow regimes are divided. Then, the sensitivity analysis of related parameters is conducted to study the influences of these parameters based on these two type curves. Model verification and field application are introduced which shows that the model is reliable. The model proposed in this paper and relevant results analysis can provide some significant guidance for a better understanding of the production behavior of MBHWs in the composite CBM reservoir.

References

1.
Goraya
,
N. S.
,
Rajpoot
,
N.
, and
Marriyappan Sivagnanam
,
B.
,
2019
, “
Coal Bed Methane Enhancement Techniques: A Review
,”
Chemistryselect.
,
4
(
12
), pp.
3585
3601
. 10.1002/slct.201803633
2.
Engler
,
T. W.
, and
Rajtar
,
J. M.
,
1992
, “
Pressure Transient Testing of Horizontal Wells in Coalbed Reservoirs
,”
SPE Rocky Mountain Regional Meeting
,
Casper, Wyoming
,
May 18–21
,
SPE Paper No. 24347
.
3.
Law
,
B. E.
, and
Curtis
,
J. B.
,
2002
, “
Introduction to Unconventional Petroleum Systems
,”
Aapg. Bull.
,
86
(
11
), pp.
1851
1852
.
4.
Guo
,
X.
,
Du
,
Z.
, and
Li
,
S.
,
2003
, “
Computer Modeling and Simulation of Coalbed Methane Reservoir
,”
SPE Eastern Regional Meeting
,
Pittsburgh, PA
,
Sept. 6–10
,
SPE Paper No. 84815
.
5.
Flores
,
R. M.
,
1998
, “
Coalbed Methane: From Hazard to Resource
,”
Int. J. Coal. Geol.
,
35
(
1–4
), pp.
3
26
. 10.1016/S0166-5162(97)00043-8
6.
Chakhmakhchev
,
A.
,
2007
, “
Worldwide Coalbed Methane Overview
,”
Hydrocarbon Economics and Evaluation Symposium
,
Dallas, TX
,
Apr. 1–3
,
SPE Paper No. 106850
.
7.
Pillalamarry
,
M.
, and
Harpalani
,
S.
,
2011
, “
Gas Diffusion Behavior of Coal and Its Impact on Production From Coalbed Methane Reservoirs
,”
Int. J. Coal. Geol.
,
86
(
4
), pp.
342
348
. 10.1016/j.coal.2011.03.007
8.
Remner
,
D. J.
,
Ertekin
,
T.
,
Sung
,
W.
, and
King
,
G. R.
,
1986
, “
A Parametric Study of the Effects of Coal Seam Properties on Gas Drainage Efficiency
,”
Spe. Reservoir. Eng.
,
1
(
6
), pp.
633
646
. 10.2118/13366-PA
9.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
SPE J.
,
3
(
3
), pp.
245
255
.
10.
Gray
,
I.
,
1987
, “
Reservoir Engineering in Coal Seams: Part 1—The Physical Process of Gas Storage and Movement in Coal Seams
,”
SPE. Reserv. Eng.
,
2
(
01
), pp.
28
34
. 10.2118/12514-PA
11.
Zhao
,
Y. L.
,
Zhang
,
L. H.
,
Luo
,
J. X.
, and
Zhang
,
B. N.
,
2014
, “
Performance of Fractured Horizontal Well With Stimulated Reservoir Volume in Unconventional Gas Reservoir
,”
J. Hydrol.
,
512
, pp.
447
456
. 10.1016/j.jhydrol.2014.03.026
12.
Thimons
,
E. D.
, and
Kissell
,
F. N.
,
1973
, “
Diffusion of Methane Through Coal
,”
Fuel.
,
52
(
4
), pp.
274
280
. 10.1016/0016-2361(73)90057-4
13.
Gray
,
I.
,
1987
, “
Reservoir Engineering in Coal Seams: Part 2-Observations of Gas Movement in Coal Seams
,”
SPE. Reserv. Eng.
,
2
(
1
), pp.
35
40
. 10.2118/14479-PA
14.
Nie
,
R. S.
,
Meng
,
Y. F.
,
Guo
,
J. C.
, and
Jia
,
Y. L.
,
2012
, “
Modeling Transient Flow Behavior of A Horizontal Well in A Coal Seam
,”
Int. J. Coal. Geol.
,
92
, pp.
54
68
. 10.1016/j.coal.2011.12.005
15.
Anbarci
,
K.
, and
Ertekin
,
T.
,
1990
, “
A Comprehensive Study of Pressure Transient Analysis #ith Sorption Phenomena for Single-Phase Gas Flow in Coal Seams
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 23–26
,
SPE Paper No. 20568
.
16.
Anbarci
,
K.
, and
Ertekin
,
T.
,
1991
, “
A Simplified Approach for In-Situ Characterization of Desorption Properties of Coal Seams
,”
Low Permeability Reservoirs Symposium
,
Denver, CO
,
Apr. 15–17
,
SPE Paper No. 21808
.
17.
Reeves
,
S.
, and
Pekot
,
L.
,
2001
, “
Advanced Reservoir Modeling in Desorption-Controlled Reservoirs
,”
SPE Rocky Mountain Petroleum Technology Conference
,
Keystone, CO
,
May 21–23
,
SPE Paper No. 71090
.
18.
Sung
,
W.
,
Ertekin
,
T.
, and
Schwerer
,
F. C.
,
1986
, “
The Development, Testing, and Application of A Comprehensive Coal Seam Degasification Model
,”
SPE Unconventional Gas Technology Symposium
,
Louisville, KY
,
May 18–21
,
SPE Paper No. 15247
.
19.
Koenig
,
R. A.
, and
Stubbs
,
P. B.
,
1986
, “
Interference Testing of A Coalbed Methane Reservoir
,”
SPE Unconventional Gas Technology Symposium
,
Louisville, KY
,
May 18–21
,
SPE Paper No. 15225
.
20.
Ertekin
,
T.
, and
Sung
,
W.
,
1989
, “
Pressure Transient Analysis of Coal Seams in the Presence of Multi-Mechanistic Flow and Sorption Phenomena
,”
SPE Gas Technology Symposium
,
Dallas, TX
,
June 7–9
,
SPE Paper No. 19102
.
21.
Sarkar
,
P. S.
, and
Rajtar
,
J. M.
,
1994
, “
Transient Well Testing of Coalbed Methane Reservoirs With Horizontal Wells
,”
Permian Basin Oil and Gas Recovery Conference
,
Midland, TX
,
Mar. 16–18
,
SPE Paper No. 27681
.
22.
Hu
,
G.
,
Wang
,
H.
,
Fan
,
X.
,
Yuan
,
Z.
, and
Hong
,
S.
,
2009
, “
Mathematical Model of Coalbed Gas Flow With Klinkenberg Effects in Multi-Physical Fields and Its Analytic Solution
,”
Transport. Porous. Med.
,
76
(
3
), pp.
407
420
. 10.1007/s11242-008-9254-4
23.
Yu-Long
,
Z.
,
Lie-Hui
,
Z.
,
Guo-Qing
,
F.
,
Bo-Ning
,
Z.
, and
Bo
,
K.
,
2016
, “
Performance Analysis of Fractured Wells With Stimulated Reservoir Volume in Coal Seam Reservoirs
,”
Oil. Gas. Sci. Technol.
,
71
(
1
), p.
8
. 10.2516/ogst/2014026
24.
Wei
,
Z.
,
Ruizhong
,
J.
,
Jianchun
,
X.
,
Yihua
,
G.
, and
Yibo
,
Y.
,
2017
, “
Production Performance Analysis for Horizontal Wells in Composite Coal Bed Methane Reservoir
,”
Energ. Explor. Exploit.
,
35
(
2
), pp.
194
217
. 10.1177/0144598716687930
25.
Karakas
,
M.
,
Yokoyama
,
Y. M.
, and
Arima
,
E. M.
,
1991
, “
Well Test Analysis of A Well With Multiple Horizontal Drainholes
,”
Middle East Oil Show
,
Bahrain
,
Nov. 16–19
,
SPE Paper No. 21424
.
26.
Kong
,
X. Y.
,
Xu
,
X. Z.
, and
Lu
,
D. T.
,
1996
, “
Pressure Transient Analysis for Horizontal Well and Multi-Branched Horizontal Wells
,”
International Conference on Horizontal Well Technology
,
Calgary, Alberta, Canada
,
Nov. 18–20
,
SPE Paper No. 37069
.
27.
Ouyang
,
L. B.
, and
Aziz
,
K.
,
1998
, “
A Simplified Approach to Couple Wellbore Flow and Reservoir Inflow for Arbitrary Well Configurations
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 27–30
,
SPE Paper No. 48936
.
28.
Yildiz
,
T.
,
2003
, “
Multilateral Pressure-Transient Response
,”
SPE J.
,
8
(
1
), pp.
5
12
. 10.2118/83631-PA
29.
Fahem
,
A.
,
Tiab
,
D.
,
Jokhio
,
S.
, and
Owayed
,
J.
,
2003
, “
Transient Pressure Behavior of Dual Lateral Wells
,”
Offshore Europe
,
Aberdeen
,
Sept. 2–5
,
SPE Paper No. 83971
.
30.
Pan
,
Y.
,
Kamal
,
M. M.
, and
Kikani
,
J.
,
2010
, “
Field Applications of A Semianalytical Model of Multilateral Wells in Multilayer Reservoirs
,”
Spe. Reserv. Eval. Eng.
,
13
(
6
), pp.
861
872
. 10.2118/121335-PA
31.
Wang
,
H.
,
Guo
,
J.
, and
Zhang
,
L.
,
2017
, “
A Semi-Analytical Model for Multilateral Horizontal Wells in Low-Permeability Naturally Fractured Reservoirs
,”
J. Petrol. Sci. Eng.
,
149
, pp.
564
578
. 10.1016/j.petrol.2016.11.002
32.
Ren
,
J.
,
Zhang
,
L.
,
Ren
,
S.
,
Lin
,
J.
,
Meng
,
S.
,
Ren
,
G.
, and
Gentzis
,
T.
,
2014
, “
Multi-Branched Horizontal Wells for Coalbed Methane Production: Field Performance and Well Structure Analysis
,”
Int. J. Coal. Geol.
,
131
, pp.
52
64
. 10.1016/j.coal.2014.06.003
33.
Liu
,
F.
,
Luo
,
Z.
, and
Wang
,
Z.
,
2015
, “
Gas Seepage Rule and Productivity Analysis in Designing Coalbed Methane Wells
,”
Chem. Tech. Fuels. Oils.
,
50
(
6
), pp.
516
524
. 10.1007/s10553-015-0558-0
34.
Zhang
,
Z.
,
Zhang
,
R.
,
Wu
,
S.
,
Deng
,
J.
,
Zhang
,
Z.
, and
Xie
,
J.
,
2019
, “
The Stress Sensitivity and Porosity Sensitivity of Coal Permeability at Different Depths: A Case Study in the Pingdingshan Mining Area
,”
Rock. Mech. Rock Eng.
,
52
(
5
), pp.
1539
1563
. 10.1007/s00603-018-1633-8
35.
Brace
,
W.
,
1978
, “
A Note on Permeability Changes in Geologic Material Due to Stress
,”
Pure. Appl Geophys.
,
116
(
4-5
), pp.
627
633
. 10.1007/BF00876529
36.
Xu
,
J.
,
Guo
,
C.
,
Wei
,
M.
, and
Jiang
,
R.
,
2015
, “
Production Performance Analysis for Composite Shale Gas Reservoir Considering Multiple Transport Mechanisms
,”
J. Nat. Gas. Sci. Eng.
,
26
, pp.
382
395
. 10.1016/j.jngse.2015.05.033
37.
Langmuir
,
I.
,
1918
, “
The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum
,”
J. Am. Chem. Soc.
,
40
(
9
), pp.
1361
1403
. 10.1021/ja02242a004
38.
Ozkan
,
E.
, and
Raghavan
,
R.
,
1991a
, “
New Solutions for Well-Test-Analysis Problems: Part 1-Analytical Considerations
,”
Spe. Form. Eval.
,
6
(
3
), pp.
359
368
. 10.2118/18615-PA
39.
Ozkan
,
E.
, and
Raghavan
,
R.
,
1991b
, “
New Solutions for Well-Test-Analysis Problems: Part 2-Computational Considerations and Applications
,”
Spe. Form. Eval.
,
6
(
3
), pp.
369
378
. 10.2118/18616-PA
40.
Pedrosa
,
O. A.
,
1986
, “
Pressure Transient Response in Stress-Sensitive Formations
,”
SPE California Regional Meeting
,
Oakland, CA
,
Apr. 2–4
,
SPE Paper No. 15115
.
41.
Van Everdingen
,
A. F.
, and
Hurst
,
W.
,
1949
, “
The Application of the Laplace Transformation to Flow Problems in Reservoirs
,”
J. Petrol. Technol.
,
1
(
12
), pp.
305
324
. 10.2118/949305-G
42.
Stehfest
,
H.
,
1970
, “
Algorithm 368: Numerical Inversion of Laplace Transforms
,”
Commun. Acm.
,
13
(
1
), pp.
47
49
. 10.1145/361953.361969
43.
Liu
,
G.
,
Ehlig-Economides
,
C.
, and
Sun
,
J.
,
2016
, “
Comprehensive Global Fracture Calibration Model
,”
Asia Pacific Hydraulic Fracturing Conference
,
Beijing, China
,
Aug. 24–26
,
SPE Paper No. 181856
.
44.
Hou
,
X.
,
Zhang
,
X.
, and
Guo
,
B.
,
2019
, “
Mathematical Modeling of Fluid Flow to Unconventional Oil Wells With Radial Fractures and Its Testing With Field Data
,”
ASME J. Energ. Resour. Technol.
,
141
(
7
), p.
070702
. 10.1115/1.4042714
45.
Meng
,
X.
, and
Wang
,
J.
,
2019
, “
Production Performance Evaluation of Multifractured Horizontal Wells in Shale Oil Reservoirs: An Analytical Method
,”
ASME J. Energ. Resour. Technol.
,
141
(
10
), p.
102907
. 10.1115/1.4043747
46.
Jiang
,
R.
,
Zhang
,
C.
,
Cui
,
Y.
,
Wang
,
Q.
,
Zhang
,
W.
, and
Zhang
,
F.
,
2019
, “
Characteristics of Transient Pressure Performance of Horizontal Wells in Fractured-Vuggy Tight Fractal Reservoirs Considering Nonlinear Seepage
,”
Oil. Gas. Sci. Technol
,
74
, p.
57
. 10.2516/ogst/2019023
You do not currently have access to this content.