Abstract

To develop a method of controlling the deposit tube surface temperature, the rules of deposition and fouling on the fireside, and the influence factors of the surface distribution were determined through experiments and theoretical calculations. The surface temperature distribution of a clean tube was compared with that of a deposit tube. Through theoretical calculations, the influence factors of the deposit tube surface temperature were evaluated. Based on the investigation, surface temperature control technology applicable to a super- heater was proposed and the feasibility of this heater was determined. A bimodal distribution was obtained when the temperature distribution of the deposit tube was plotted as a function of the angle, whereas a unimodal distribution was obtained for the clean tube. The results revealed that the heat exchange tube surface temperature is most effectively controlled by controlling the flue gas temperature. Prior to the development of higher performance materials (compared with conventional materials), surface temperature control technology can be used to ensure that the super-heater surface temperature lies below the allowable temperature of existing super-heater materials.

References

1.
Ullah
,
H.
,
Liu
,
G.
,
Yousaf
,
B.
,
Ubaid
,
M.
,
Abbas
,
Q.
,
Zhou
,
C.
, and
Rashid
,
A.
,
2018
, “
Hydrothermal Dewatering of Low-Rank Coals: Influence on the Properties and Combustion Characteristics of the Solid Products
,”
Energy
,
158
, pp.
1192
1203
. 10.1016/j.energy.2018.06.052
2.
Yohanes
,
K.
,
Kim
,
J.
,
Lim
,
H.
,
Kim
,
S.
, and
Jeon
,
C.
,
2016
, “
Prediction of Unburned Carbon and NO Formation From Low-Rank Coal During Pulverized Coal Combustion : Experiments and Numerical Simulation
,”
Fuel
,
185
, pp.
478
490
. 10.1016/j.fuel.2016.08.026
3.
Robinson
,
A. L.
,
Junker
,
H.
, and
Baxter
,
L. L.
,
2002
, “
Pilot-Scale Investigation of the Influence of Coal-Biomass Cofiring on Ash Deposition
,”
Energy Fuels
,
16
(
2
), pp.
343
355
. 10.1021/ef010128h
4.
Valmari
,
T.
,
Lind
,
T. M.
,
Kauppinen
,
E. I.
,
Sfiris
,
G.
,
Nilsson
,
K.
, and
Maenhaut
,
W.
,
1999
, “
Field Study on Ash Behavior During Circulating Fluidized-Bed Combustion of Biomass. 2. Ash Deposition and Alkali Vapor Condensation
,”
Energy Fuels
,
13
(
2
), pp.
390
395
. 10.1021/ef9800866
5.
Li
,
M. J.
,
Tang
,
S. Z.
,
Wang
,
F. l.
,
Zhao
,
Q. X.
, and
Tao
,
W. Q.
,
2017
, “
Gas-Side Fouling, Erosion and Corrosion of Heat Exchangers for Middle/Low Temperature Waste Heat Utilization: A Review on Simulation and Experiment
,”
Appl. Therm. Eng.
,
126
, pp.
737
761
. 10.1016/j.applthermaleng.2017.07.095
6.
Bryers
,
R. W.
,
1996
, “
Fireside Slagging, Fouling, and High-Temperature Corrosion of Heat-Transfer Surface Due to Impurities in Steam-Raising Fuels
,”
Prog. Energy Combust. Sci.
,
22
(
1
), pp.
29
120
. 10.1016/0360-1285(95)00012-7
7.
Yang
,
X.
,
Ingham
,
D.
,
Ma
,
L.
,
Zhou
,
H.
, and
Pourkashanian
,
M.
,
2017
, “
Understanding the Ash Deposition Formation in Zhundong Lignite Combustion Through Dynamic CFD Modelling Analysis
,”
Fuel
,
194
, pp.
533
543
. 10.1016/j.fuel.2017.01.026
8.
Miles
,
T. R.
,
Miles
,
T. R.
,
Baxter
,
L. L.
, and
Bryers
,
R. W.
,
1996
, “
Boiler Deposits From Firing Biomass Fuels
,”
Biomass Bioenergy
,
10
(
2–3
), pp.
125
138
. 10.1016/0961-9534(95)00067-4
9.
Han
,
J.
,
Yu
,
D.
,
Wu
,
J.
,
Yu
,
X.
,
Liu
,
F.
,
Wang
,
J.
, and
Xu
,
M.
,
2019
, “
Fine Ash Formation and Slagging Deposition During Combustion of Silicon-Rich Biomasses and Their Blends With a Low-Rank Coal
,”
Energy Fuels
,
33
(
7
), pp.
5875
5882
. 10.1021/acs.energyfuels.8b04193
10.
Wu
,
J.
,
Yu
,
D.
,
Zeng
,
X.
,
Yu
,
X.
,
Han
,
J.
,
Wen
,
C.
, and
Yu
,
G.
,
2018
, “
Ash Formation and Fouling During Combustion of Rice Husk and Its Blends With a High Alkali Xinjiang Coal
,”
Energy Fuels
,
32
(
1
), pp.
416
424
. 10.1021/acs.energyfuels.7b02298
11.
Rezaei
,
H. R.
,
Gupta
,
R. P.
,
Bryant
,
G. W.
,
Hart
,
J. T.
,
Liu
,
G. S.
,
Bailey
,
C. W.
,
Wall
,
T. F.
,
Miyamae
,
S.
,
Makino
,
K.
, and
Endo
,
Y.
,
2000
, “
Thermal Conductivity of Coal Ash and Slags and Models Used
,”
Fuel
,
79
(
13
), pp.
1697
1710
. 10.1016/S0016-2361(00)00033-8
12.
Anderson
,
D. W.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
,
1987
, “
Effective Thermal Conductivity of Coal Ash Deposits at Moderate to High Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
109
(
2
), pp.
215
221
. 10.1115/1.3240027
13.
Dai
,
B. Q.
,
Low
,
F.
,
De Girolamo
,
A.
,
Wu
,
X.
, and
Zhang
,
L.
,
2013
, “
Characteristics of Ash Deposits in a Pulverized Lignite Coal-Fired Boiler and the Mass Flow of Major Ash-Forming Inorganic Elements
,”
Energy Fuels
,
27
(
10
), pp.
6198
6211
. 10.1021/ef400930e
14.
Nielsen
,
H. P.
,
Baxter
,
L. L.
,
Sclippab
,
G.
,
Morey
,
C.
,
Frandsen
,
F. J.
, and
Dam-Johansen
,
K.
,
2000
, “
Deposition of Potassium Salts on Heat Transfer Surfaces in Straw-Fired Boilers: A Pilot-Scale Study
,”
Fuel
,
79
(
2
), pp.
131
139
. 10.1016/S0016-2361(99)00090-3
15.
Kar
,
S. K.
,
Rosendahl
,
L. A.
, and
Baxter
,
L. L.
,
2006
, “
Towards a CFD-Based Mechanistic Deposit Formation Model for Straw-Fired Boilers
,”
Fuel
,
85
(
5-6
), pp.
833
848
. 10.1016/j.fuel.2005.08.016
16.
Garba
,
M. U.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Degereji
,
M. U.
,
Pourkashanian
,
M.
, and
Williams
,
A.
,
2013
, “
Modelling of Deposit Formation and Sintering for the Co-Combustion of Coal With Biomass
,”
Fuel
,
113
, pp.
863
872
. 10.1016/j.fuel.2012.12.065
17.
Yang
,
X.
,
Ingham
,
D.
,
Ma
,
L.
, and
Troiano
,
M.
,
2019
, “
Prediction of Particle Sticking Efficiency for Fly Ash Deposition at High Temperatures
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
2995
3003
. 10.1016/j.proci.2018.06.038
18.
Huang
,
Q.
,
Li
,
S.
,
Shao
,
Y.
,
Zhao
,
Y.
, and
Yao
,
Q.
,
2019
, “
Dynamic Evolution of Impaction and Sticking Behaviors of Fly Ash Particle in Pulverized Coal Combustion
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4419
4426
. 10.1016/j.proci.2018.06.035
19.
Gopan
,
A.
,
Yang
,
Z.
, and
Axelbaum
,
R. L.
,
2019
, “
Predicting Particle Deposition for Flow Over a Circular Cylinder in Combustion Environments
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4427
4434
. 10.1016/j.proci.2018.06.220
20.
Li
,
G.
,
Wang
,
C.
,
Yan
,
Y.
,
Jin
,
X.
,
Liu
,
Y.
, and
Che
,
D.
,
2016
, “
Release and Transformation of Sodium During Combustion of Zhundong Coals
,”
J. Energy Inst.
,
89
(
1
), pp.
48
56
. 10.1016/j.joei.2015.01.011
21.
Zhang
,
X.
,
Zhang
,
H.
, and
Na
,
Y.
,
2015
, “
Transformation of Sodium During the Ashing of Zhundong Coal
,”
Procedia Eng.
,
102
, pp.
305
314
. 10.1016/j.proeng.2015.01.147
22.
Wang
,
X.
,
Xu
,
Z.
,
Wei
,
B.
,
Zhang
,
L.
,
Tan
,
H.
,
Yang
,
T.
,
Mikulčić
,
H.
, and
Duić
,
N.
,
2015
, “
The Ash Deposition Mechanism in Boilers Burning Zhundong Coal With High Contents of Sodium and Calcium: A Study From Ash Evaporating to Condensing
,”
Appl. Therm. Eng.
,
80
, pp.
150
159
. 10.1016/j.applthermaleng.2015.01.051
23.
Yang
,
S.
, and
Tao
,
W.
,
2006
,
Heat Transfer
, 4th ed.,
Higher Education Press
,
Beijing
.
24.
Xiaoling Mao
,
P. W.
,
2006
, “
Evaluation of Super 304H and XA704 Tubes for Ultra Supercritical Boiler
,”
Dongfang Electric Rev.
,
20
(
3
), pp.
31
36
.
25.
Zhou
,
Q.
,
2013
,
Principles of Boiler
, 3rd ed.,
China Electric Power Press
,
Beijing
.
26.
Phongphiphat
,
A.
,
Ryu
,
C.
,
Yang
,
Y. B.
,
Finney
,
K. N.
,
Leyland
,
A.
,
Sharifi
,
V. N.
, and
Swithenbank
,
J.
,
2010
, “
Investigation Into High-Temperature Corrosion in a Large-Scale Municipal Waste-to-Energy Plant
,”
Corros. Sci.
,
52
(
12
), pp.
3861
3874
. 10.1016/j.corsci.2010.07.032
27.
Raask
,
E.
,
1985
,
Mineral Impurities in Coal Combustion: Behavior, Problems, and Remedial Measures
,
Taylor & Francis
,
London
.
28.
Iseda
,
A.
,
Okada
,
H.
,
Semba
,
H.
, and
Igarashi
,
M.
,
2007
, “
Long Term Creep Properties and Microstructure of SUPER304H, TP347HFG and HR3C for A-USC Boilers
,”
Energy Mater.
,
2
(
4
), pp.
199
206
. 10.1179/174892408X382860
You do not currently have access to this content.