Abstract

In the dilution section of the gas turbine, the flow and thermal mixing between the cold radial jets and hot mainstream is always a matter of interest to generate a consistent thermal profile, extending the longevity of the turbine blades. Multiple researches explored the topic experimentally and numerically, and new designs have been evaluated, including a central streamlined body with swirlers inside the dilution zone. Moreover, the dimensional aspects (diameter, length, and position) of the streamlined body can help in generating more uniform thermal profiles, but with the cost of increased pressure drop. Various design iterations are needed to be tested and assessed based on minimizing the contradicting uniformity number and pressure drop. Such a process is time and resources consuming if not wisely managed. The paper proposes a solution for the current problem by the integration of the “Design of Experiment/Optimization Algorithms” generator with the computational fluid dynamics solver. The outcomes from three different algorithms (ULH, MOGA-II, and HYBRID) are statistically analyzed to understand inputs-outputs correlations, develop response surface methodology, and help in finding the optimal designs. The suggested HYBRID optimization provided a better optimal curve with improvements of 69% and 15% in the thermal uniformity and pressure drop, respectively. The correlation coefficients stressed on the importance of the diameter as the highest influencer with inverse and direct correlations with uniformity and pressure drop, respectively. Finally, the Kriging response surface model enabled more optimal designs and a better understanding of the effective ranges of the three inputs.

References

1.
Razak
,
A. M. Y.
,
2007
,
Industrial Gas Turbines: Performance and Operability
,
Elsevier
,
New York
.
2.
Boyce
,
M. P.
,
2006
,
An Overview of Gas Turbines, Gas Turbine Engineering Handbook
, 3rd ed.,
Gulf Professional Publishing
,
Oxford, UK
, p.
49
.
3.
Holdeman
,
J. D.
,
Srinivasant
,
R.
, and
Berenfeld
,
A.
,
1984
, “
Experiments in Dilution Jet Mixing
,”
AIAA J.
,
22
(
10
), pp.
1436
1443
. 10.2514/3.48582
4.
Smith
,
C.
,
July 1990
, “
Mixing Characteristics of Dilution Jets in Small Gas Turbine Combustors
,”
26th Joint Propulsion Conference
, p.
2728
.
5.
Holdeman
,
J. D.
,
1993
, “
Mixing of Multiple Jets with a Confined Subsonic Crossflow
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
31
70
. 10.1016/0360-1285(93)90021-6
6.
Hoke
,
J. B.
,
Mountz
,
D. B.
,
Olsen
,
H.
, and
Sonntag
,
R. M.
,
2000
,
United Technologies Corporation, Low Emissions Can Combustor With Dilution Hole Arrangement for a Turbine Engine, U.S. Patent 6,101,814
.
7.
Lenertz
,
J.
, and
Lawrence
,
K.
,
2001
,
AlliedSignal Inc., Combustor Dilution Bypass Method, U.S. Patent 6,178,737
.
8.
Prière
,
C.
,
Gicquel
,
L. Y.
,
Gajan
,
P.
,
Strzelecki
,
A.
,
Poinsot
,
T.
, and
Bérat
,
C.
,
2005
, “
Experimental and Numerical Studies of Dilution Systems for Low-Emission Combustors
,”
AIAA J.
,
43
(
8
), pp.
1753
1766
. 10.2514/1.14681
9.
Morris
,
R. M.
,
Snyman
,
J.
, and
Meyer
,
J.
,
2007
, “
Jets in Crossflow Mixing Analysis Using Computational Fluid Dynamics and Mathematical Optimization
,”
J. Propul. Power
,
23
(
3
), pp.
618
628
. 10.2514/1.22136
10.
Simons
,
D. W.
,
Gupta
,
A. K.
, and
Romoser
,
C. E.
, 2008, General Electric Company, “Turbine Combustor Transition Piece Having Dilution Holes,” U.S. Patent 7,373,772.
11.
Ding
,
G.
,
He
,
X.
,
Zhao
,
Z.
,
An
,
B.
,
Song
,
Y.
, and
Zhu
,
Y.
,
2014
, “
Effect of Dilution Holes on the Performance of a Triple Swirler Combustor
,”
Chin. J. Aeronaut.
,
27
(
6
), pp.
1421
1429
. 10.1016/j.cja.2014.10.008
12.
Gupta
,
A.
,
Ibrahim
,
M. S.
, and
Amano
,
R. S.
,
2015
, “
Experimental Study of Novel Passive Control Methods to Improve Combustor Exit Temperature Uniformity
,”
Heat Mass Transf.
,
51
(
1
), pp.
23
32
. 10.1007/s00231-014-1357-6
13.
Selim
,
M. O.
, and
Amano
,
R. S.
,
2019
,
AIAA SciTech
,
American Institute of Aeronautics and Astronautics, Inc.
,
San Diego, CA
. 10.2514/6.2019-1773
14.
Selim
,
O. M.
,
Elgammal
,
T.
, and
Amano
,
R. S.
,
2020
, “
Experimental and Numerical Study on the Use of Guide Vanes in the Dilution Zone
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
083001
. 10.1115/1.4046079
15.
Elgammal
,
T.
, and
Amano
,
R. S.
,
2018
, “
Effectiveness of Central Swirlers in the Thermal Uniformity of Jet-in-Crossflow Mixing
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
101202
. 10.1115/1.4040075
16.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
. 10.1080/00401706.2000.10485979
18.
Bruns
,
A.
,
1998
,
Advances in Distribution Logistics
,
B.
Fleischmann
,
Jo A. E. E.
van Nunen
,
M. G.
Speranza
, and
P.
Stähly
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
143
164
.
19.
Lasdon
,
L. S.
,
Fox
,
R. L.
, and
Ratner
,
M. W.
,
1974
, “
Nonlinear Optimization Using the Generalized Reduced Gradient Method
,” Revue française d'automatique, d'informatique et de recherche opérationnelle.
Recherche opérationnelle
,
8
(
3
), pp.
73
103
. 10.1051/ro/197408V300731
20.
Floudas
,
C. A.
,
2013
,
Deterministic Global Optimization: Theory, Methods and Applications
, Vol.
37
,
Springer Science & Business Media
,
US
.
21.
Rigoni
,
E.
, and
Poles
,
S.
,
2005
, “
NBI and MOGA-II, two Complementary Algorithms for Multi-Objective Optimizations
,”
Dagstuhl Seminar Proceedings
, Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
22.
Chase
,
N.
,
Redemacher
,
M.
,
Goodman
,
E.
,
Averill
,
R.
, and
Sidhu
,
R.
,
2010
,
A Benchmark Study of Optimization Search Algorithms
,
Red Cedar Technology
,
MI, USA
.
23.
Turco
,
A.
,
2011
Hybrid—Description
,”
ESTECO Technical Report 2011-003
,
Trieste, Italy
.
24.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T. A. M. T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
25.
Turco
,
A.
,
2010
, “
Adaptive Filter SQP
,”
Learn. Intell. Opt.
, pp.
68
81
. 10.1007/978-3-642-13800-3
26.
Reyhani
,
M. R.
,
Alizadeh
,
M.
,
Fathi
,
A.
, and
Khaledi
,
H.
,
2013
, “
Turbine Blade Temperature Calculation and Life Estimation-a Sensitivity Analysis
,”
Propul. Power Res.
,
2
(
2
), pp.
148
161
. 10.1016/j.jppr.2013.04.004
27.
Minitab, LLC
, “
Minitab Express Support: A Comparison of the Pearson and Spearman Correlation Methods
,”
2019
, https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/, Accessed October 22, 2020.
28.
Clarich
,
A.
, and
Russo
,
R.
,
2010
, “
Use of Multi-Variate-Data-Analysis, Fast Algorithms and Grid Automation in ModeFrontier for Multi-Objective Optimization
,”
Eccomas CFD & Optimization
,
Antalya, Turkey
.
You do not currently have access to this content.